Members Can Post Anonymously On This Site
NASA’s SpaceX Crew-11 Mission Gears Up for Space Station Research
-
Similar Topics
-
By NASA
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA NASA will host a news conference at 12 p.m. EDT Monday, July 21, to discuss the upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission.
The Earth-observing satellite, a first-of-its-kind collaboration between NASA and ISRO (Indian Space Research Organisation), carries an advanced radar system that will help protect communities by providing a dynamic, three-dimensional view of Earth in unprecedented detail and detecting the movement of land and ice surfaces down to the centimeter.
The NISAR mission will lift off from ISRO’s Satish Dhawan Space Centre in Sriharikota, on India’s southeastern coast. Launch is targeted for no earlier than late July.
NASA’s Jet Propulsion Laboratory in Southern California will stream the briefing live on its X, Facebook, and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.
Participants in the news conference include:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Karen St. Germain, director, Earth Science Division, NASA Headquarters Wendy Edelstein, deputy project manager, NISAR, NASA JPL Paul Rosen, project scientist, NISAR, NASA JPL To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions can be asked on social media during the briefing using #AskNISAR.
With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — NISAR will use a technique known as synthetic aperture radar (SAR) to scan nearly all the planet’s land and ice surfaces twice every 12 days. Each system’s signal is sensitive to different sizes of features on Earth’s surface, and each specializes in measuring different attributes, such as moisture content, surface roughness, and motion.
These capabilities will help scientists better understand processes involved in natural hazards and catastrophic events, such as earthquakes, volcanic eruptions, land subsidence, and landslides.
Additionally, NISAR’s cloud penetrating ability will aid urgent responses to communities during weather disasters such as hurricanes, storm surge, and flooding. The detailed maps the mission creates also will provide information on both gradual and sudden changes occurring on Earth’s land and ice surfaces.
Managed by Caltech for NASA, JPL leads the U.S. component of the NISAR project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Near Space Network, which will receive NISAR’s L-band data.
Multiple ISRO centers have contributed to NISAR. The Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov
-end-
Karen Fox / Elizabeth Vlock
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
Andrew Wang / Scott Hulme
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-653-9131
andrew.wang@jpl.nasa.gov / scott.d.hulme@jpl.nasa.gov
Share
Details
Last Updated Jul 16, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Division Goddard Space Flight Center Jet Propulsion Laboratory Near Space Network Science Mission Directorate View the full article
-
By Space Force
The annex details how the service will consider and prioritize commercial space sector requests for government resources, as well as government investment decisions.
View the full article
-
By NASA
An artist’s concept of the Starlab commercial space station.Starlab As NASA continues its transition toward a commercial low Earth orbit marketplace, an agency-supported commercial space station, Starlab, recently completed five development and design milestones. Starlab’s planned design consists of a service module and a habitat that will be launched to orbit on a single flight.
The milestones, part of a NASA Space Act Agreement awarded in 2021, focused on reviews of Starlab’s preliminary design and safety, as well as spacecraft mockup and procurement plans. Each milestone provides NASA insight into the company’s development progress.
“As we work toward the future of low Earth orbit, these milestones demonstrate Starlab’s dedication to building a commercial space station that can support human life and advance scientific research,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Both the insight shared by Starlab and the expertise shared by NASA are critical to future mission success.”
Starlab recently completed a preliminary design and safety review of its station’s architecture and systems. The company now will begin detailed design and hardware development, culminating in a critical design review later this year. Critical design reviews are an important step in a station’s development, assessing design maturity before proceeding with fabrication and assembly.
An artist’s concept of the Starlab commercial space station.Starlab Starlab also has begun construction of a full-scale, high-fidelity mockup of the station. The mockup, which will be housed in the Space Vehicle Mockup Facility at NASA Johnson, will be used for human-in-the-loop testing, during which participants perform day-in-the-life walkthroughs and evaluate the interior design, crew training, procedure development, hardware checks, and in-flight issue resolution.
In addition, Starlab completed reviews of the system design architecture, procurement plan, and Northrop Grumman Cygnus spacecraft docking system design. In 2023, Northrop Grumman teamed up with Starlab to provide cargo logistics services and engineering consultation to support the commercial space station. These reviews included design configuration updates of solar arrays, docking ports, crew quarters, and more.
NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. Following the design and development phase, NASA plans to procure services from one or more companies as part of its strategy to become one of many customers for low Earth orbit stations.
Learn more about commercial space stations at:
www.nasa.gov/commercialspacestations
Keep Exploring Discover More Topics
Commercial Space Stations
Low Earth Orbit Economy
Commercial Space
Humans In Space
View the full article
-
By NASA
Sylvie Crowell Credit: NASA Sylvie Crowell, a materials researcher at NASA’s Glenn Research Center in Cleveland, has received a NASA Early Career Initiative (ECI) award for a research proposal titled “Lunar Dust Reduction through Electrostatic Adhesion Mitigation (L-DREAM).” The research focuses on developing a passive lunar dust mitigation coating for solar cells and thermal control surfaces.
Operated under the NASA Space Technology Mission Directorate, the award will fund Crowell’s research in fiscal year 2026, beginning Oct. 1, 2025.
NASA’s ECI is a unique opportunity for the best and brightest of NASA’s early career researchers to lead hands-on technology development projects. The initiative aims to invigorate NASA’s technological base and best practices by partnering early career NASA leaders with external innovators.
Return to Newsletter View the full article
-
By European Space Agency
Video: 00:00:40 View of Earth as seen by ESA project astronaut Sławosz Uznański-Wiśniewski inside the seven-windowed cupola, the International Space Station's "window to the world".
The European Space Agency-built Cupola is the favourite place of many astronauts on the International Space Station. It serves not only as a unique photo spot, but also for observing robotic activities of the Canadian Space Agency's robotic arm Canadarm2, arriving spacecraft and spacewalks.
Sławosz was launched to the International Space Station on the Dragon spacecraft as part of Axiom Mission 4 on 25 June 2025. The 20-day mission on board is known as Ignis.
During the Ignis mission, Sławosz conducted 13 experiments proposed by Polish companies and institutions and developed in collaboration with ESA, along with three additional ESA-led experiments. These covered a broad range of areas including human research, materials science, biology, biotechnology and technology demonstrations.
The Ax-4 mission marks the second commercial human spaceflight for an ESA project astronaut. Ignis was sponsored by the Polish government and supported by ESA, the Polish Ministry of Economic Development and Technology (MRiT) and the Polish Space Agency (POLSA).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.