Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Helio Highlights: June 2025

4 Min Read

Helio Highlights: June 2025

NASA's Parker Solar Probe -- with its heat shield facing forward and twin solar panels partially extended -- flies through particles in space.
An artist’s interpretation of the Parker Solar Probe flying through the corona.
Credits:
NASA

Two Stars in Solar Science

It takes a lot of work to make space missions happen. Hundreds or even thousands of experts work as a team to put together the spacecraft. Then it has to be tested in conditions similar to space, to be sure that it can survive out there once it is launched. Fixing big issues that pop up after launch is either impossible or very difficult, so it is important that everything works before the mission gets to space.

The Parker Solar Probe and Solar Orbiter missions study the Sun from different points of view. Parker is led by NASA and was built to fly into the upper atmosphere of the Sun, called the corona. Solar Orbiter is led by the European Space Agency (ESA) and has gotten our first peek at the Sun’s poles. Together, they both provide a deeper understanding of the Sun and how it affects the rest of the solar system.

A New Way of Seeing

It takes a lot of teamwork to build and launch any space mission, and Solar Orbiter was no different. It also had to go through a lot of testing in conditions similar to outer space before it made its final journey to the launch site.

The Solar Orbiter mission has taken the highest-ever-resolution images of the Sun and recently sent back the first ever close-up images of the Sun’s poles. It has also studied the solar wind to see what it is made of and helped scientists find out where on the Sun the solar wind comes from. Working hand-in-hand with Parker, it has also shown how the solar wind gets a magnetic “push” that increases its total speed.

Solar_Orbiter_instruments.jpg?w=8000&h=4
An infographic showing the ten scientific instruments carried aboard Solar Orbiter
European Space Agency

To get all of this done, the spacecraft carries ten different scientific instruments on its voyage around the Sun. These instruments work together to provide a total overview of our star. Six of them are remote-sensing instruments (above in gold), which “see” the Sun and return imagery to Earth. The other four are what’s called in-situ instruments (above in pink), which measure the environment all  around the spacecraft. This includes the solar wind, and the electric and magnetic fields embedded within it.

Faster and Closer Than Ever Before

The Parker Solar Probe was named for Dr. Eugene N. Parker, who pioneered our modern understanding of the Sun. In the mid-1950s, Parker developed a theory that predicted the solar wind. The probe named after him is designed to swoop within 4 million miles (6.5 million kilometers) of the Sun’s surface to trace its energy flow, to study the heating of the corona, and to explore what accelerates the solar wind.

To get all this done, the probe has to survive the blazing hot corona. It can get up to about 2 million °F (1.1 million °C)!  Parker uses high-tech thermal engineering to protect itself, including an eight-foot diameter heat shield called the Thermal Protection System (TPS). The TPS is made of two panels of carbon composite with a lightweight 4.5-inch-thick carbon foam core. This heat shield sandwich keeps things about 85 °F (29 °C) in its shadow, even though the Sun-facing side reaches about 2,500 °F (1,377 °C)!

In 2018, the Parker Solar Probe became the fastest spacecraft ever built, at about 430,000 miles per hour (700,000 kilometers per hour). It also got seven times closer to the Sun than any other spacecraft, getting within 3.8 million miles (6.2 million kilometers). It made this record-breaking close encounter on Christmas Eve of 2024.

From Yesterday to Tomorrow

The Parker Solar Probe was launched on August 12, 2018, and Solar Orbiter was launched on February 10, 2020. Both of them took off from Cape Canaveral Air Station in Florida. Some pieces of Solar Orbiter were transported in trucks, but the completed spacecraft made the journey from Europe to the U.S. on a gigantic Antonov cargo plane designed especially for transporting spacecraft.

Together, these spacecraft have done a lot to improve our knowledge of the Sun. Both missions are currently in their main operational phase, with projected end-of-mission sometime in 2026, and could continue returning data for a few years to come.

Here are more resources about these missions

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Latest Solar Activity Update: 24 Hours of Sunspots, Flares & Auroras (July 16, 2025)
    • By NASA
      On Tuesday, March 4, 2025, technicians at NASA’s Glenn Research Center in Cleveland help lower student experiments in the 2.2 Second Drop Tower. Credit: NASA/Jef Janis  Nineteen teams of students from across the nation in grades 8-12 worked for months in classrooms, labs, basements, and garages for the opportunity to test their projects at NASA’s Glenn Research Center in Cleveland. This spring, the teams’ hard work was put to the test in the 2.2 Second Drop Tower facility at NASA Glenn.  
      The “2025 Drop Tower Challenge: Paddle Wheel” invited teams to design and build paddle wheels that rotate in water during free fall. The wheels could not rotate by mechanical means. A better understanding of fluid behavior in microgravity could improve spacecraft systems for cooling, life support, and propellants.

      On Thursday, May 6, 2025, NASA Glenn Research Center technicians — left to right, John Doehne, Jason West, and Moses Brown — prepare the 2.2. Second Drop Tower for testing student experiments during the 2025 Drop Tower Challenge. Credit: NASA/Jef Janis  Based on test performance, analyses, reports, the students’ approach to the challenge, and more, the following teams have been identified as the winners:  
      First Place: Arth Murarka, Umar Khan, Ishaan Joshi, Alden Al-Mehdi, Rohnin Qureshi, and Omy Gokul (advised by David Dutton), Bellarmine College Preparatory, San Jose, California   Second Place: Emma Lai, Keaton Dean, and Oliver Lai (advised by Stephen Lai), Houston, Texas   Third Place: Chloe Benner, Ananya Bhatt, and Surabhi Gupta (advised by SueEllen Thomas), Pennridge High School, Perkasie, Pennsylvania  “We’re impressed with the variety of designs students submitted for testing in Glenn’s drop tower,” said Nancy Hall, co-lead for the 2025 Drop Tower Challenge. “The teams showed significant creativity and background research through their paddle wheel designs and analysis of results.”  
      Students from Bellarmine College Preparatory shared how they navigated through the process to earn first place. Using NASA guidelines and resources available to assist students with the challenge, the team submitted a research proposal, including two 3D designs. Learning their team was selected, they reviewed feedback from the NASA staff and set to work.  

      NASA Glenn Research Center’s 2025 Drop Tower Challenge first place winners, left to right, Ishaan Joshi, Umar Khan, Rohnin Qureshi, Omy Gokul, and Arth Murarka of Bellarmine College Preparatory in San Jose, California, prepare their experiment for testing in NASA Glenn’s 2.2 Second Drop Tower on Friday, May 30, 2025. Credit: Courtesy of Bellarmine College Preparatory  To start, students stressed that they conducted a large amount of research and testing of materials to use in their paddle wheels before deciding on the final design.  
      “I learned that something doesn’t need to be super expensive or complex to work,” said student Umar Khan. “We found that white board sheets or packing peanuts — just household items — can be effective [in the design].”  
      Student Arth Murarka added, “Our original design looks a lot different from the final.” 
      Bellarmine staff member and team advisor David Dutton helped the students get organized in the beginning of the process, but said they worked independently through much of the project.  
      Nancy Hall, left, co-lead of NASA Glenn Research Center’s 2025 Drop Tower Challenge, and intern Jennifer Ferguson prepare student experiments for testing in the 2.2 Second Drop Tower on Tuesday, March 4, 2025. Credit: NASA/Jef Janis  Once the design was finalized, the team shipped their hardware to NASA Glenn. NASA technicians then tested how the paddle wheels performed in the drop tower, which is used for microgravity experiments.
      Students said they studied concepts including capillary physics and fluid dynamics. They also learned how to write a research paper, which they said they will appreciate in the future.  
      The team dedicated a lot of time to the project, meeting daily and on weekends. 
      “We learned a lot of useful skills and had a lot of fun,” Murarka said. “It was definitely worth it.” 
      Return to Newsletter View the full article
    • By European Space Agency
      After 20 days in space, ESA project astronaut Sławosz Uznański-Wiśniewski and his Axiom Mission 4 (Ax-4) crewmates returned safely to Earth today, 15 July 2025.
      View the full article
    • By Amazing Space
      Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
    • By European Space Agency
      Week in images: 07-11 July 2025
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...