Jump to content

Recommended Posts

  • Publishers
Posted
A mountainous formation on Titan with a lake and cloudy atmosphere.
Hydrocarbon lake and methane rain clouds on Titan
Jenny McElligott/eMITS

NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.

Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane. 

On Earth, liquid water is thought to have been essential for the origin of life as we know it. Many astrobiologists have wondered whether Titan’s liquids could also provide an environment for the formation of the molecules required for life – either as we know it or perhaps as we don’t know it – to take hold there.

New NASA research, published in the International Journal of Astrobiology, outlines a process by which stable vesicles might form on Titan, based on our current knowledge of the moon’s atmosphere and chemistry. The formation of such compartments is an important step in making the precursors of living cells (or protocells).

The process involves molecules called amphiphiles, which can self-organize into vesicles under the right conditions. On Earth, these polar molecules have two parts, a hydrophobic (water-fearing) end and a hydrophilic (water-loving) end. When they are in water, groups of these molecules can bunch together and form ball-like spheres, like soap bubbles, where the hydrophilic part of the molecule faces outward to interact with the water, thereby ‘protecting’ the hydrophobic part on the inside of the sphere. Under the right conditions, two layers can form creating a cell-like ball with a bilayer membrane that encapsulates a pocket of water on the inside.

When considering vesicle formation on Titan, however, the researchers had to take into account an environment vastly different from the early Earth.

Uncovering Conditions on Titan

A stitched image of a mountainous formation on Titan
Huygens captured this aerial view of Titan from an altitude of 33,000 feet.
ESA/NASA/JPL/University of Arizona

Titan is Saturn’s largest moon and the second largest in our solar system. Titan is also the only moon in our solar system with a substantial atmosphere.

The hazy, golden atmosphere of Titan kept the moon shrouded in mystery for much of human history. However, when NASA’s Cassini spacecraft arrived at Saturn in 2004, our views of Titan changed forever.

Thanks to Cassini, we now know Titan has a complex meteorological cycle that actively influences the surface today. Most of Titan’s atmosphere is nitrogen, but there is also a significant amount of methane (CH4). This methane forms clouds and rain, which falls to the surface to cause erosion and river channels, filling up the lakes and seas. This liquid then evaporates in sunlight to form clouds once again.

This atmospheric activity also allows for complex chemistry to happen. Energy from the Sun breaks apart molecules like methane, and the pieces then reform into complex organic molecules. Many astrobiologists believe that this chemistry could teach us how the molecules necessary for the origin of life formed and evolved on the early Earth.

Building Vesicles on Titan

The new study considered how vesicles might form in the freezing conditions of Titan’s hydrocarbon lakes and seas by focusing on sea-spray droplets, thrown upwards by splashing raindrops. On Titan, both spray droplets and the sea surface could be coated in layers of amphiphiles. If a droplet then lands on the surface of a pond, the two layers of amphiphiles meet to form a double-layered (or bilayer) vesicle, enclosing the original droplet. Over time, many of these vesicles would be dispersed throughout the pond and would interact and compete in an evolutionary process that could lead to primitive protocells.

If the proposed pathway is happening, it would increase our understanding of the conditions in which life might be able to form. 

“The existence of any vesicles on Titan would demonstrate an increase in order and complexity, which are conditions necessary for the origin of life,” explains Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re excited about these new ideas because they can open up new directions in Titan research and may change how we search for life on Titan in the future.”

NASA’s first mission to Titan is the upcoming Dragonfly rotorcraft, which will explore the surface of the Saturnian moon. While Titan’s lakes and seas are not a destination for Dragonfly (and the mission won’t carry the light-scattering instrument required to detect such vesicles), the mission will fly from location to location to study the moon’s surface composition, make atmospheric and geophysical measurements, and characterize the habitability of Titan’s environment.

News Media Contacts

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut and Expedition 65 Flight Engineer Megan McArthur removes Kidney Cells-02 hardware inside the Space Automated Bioproduct Laboratory and swaps media inside the Microgravity Science Glovebox. The human research study seeks to improve treatments for kidney stones and osteoporosis NASA astronaut Megan McArthur has retired, concluding a career spanning more than two decades. A veteran of two spaceflights, McArthur logged 213 days in space, including being the first woman to pilot a SpaceX Dragon spacecraft and the last person to “touch” the Hubble Space Telescope with the space shuttle’s robotic arm.
      McArthur launched as pilot of NASA’s SpaceX Crew-2 mission in April 2021, marking her second spaceflight and her first long-duration stay aboard the International Space Station. During the 200-day mission, she served as a flight engineer for Expeditions 65/66, conducting a wide array of scientific experiments in human health, materials sciences, and robotics to advance exploration of the Moon under Artemis and prepare to send American astronauts to Mars.
      Her first spaceflight was STS-125 in 2009, aboard the space shuttle Atlantis, the fifth and final servicing mission to Hubble. As a mission specialist, she was responsible for capturing the telescope with the robotic arm, as well as supporting five spacewalks to update and repair Hubble after its first 19 years in space. She also played a key role in supporting shuttle operations during launch, rendezvous with the telescope, and landing.
      “Megan’s thoughtful leadership, operational excellence, and deep commitment to science and exploration have made a lasting impact,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her contributions have helped shape the future of human space exploration, and we are incredibly grateful for her service.”
      In addition to her flight experience, McArthur has served in various technical and leadership roles within NASA. In 2019, she became the deputy division chief of the Astronaut Office, supporting astronaut training, development, and ongoing spaceflight operations. She also served as the assistant director of flight operations for the International Space Station Program starting in 2017.
      Since 2022, McArthur has served as the chief science officer at Space Center Houston, NASA Johnson’s official visitor center. Continuing in this role, she actively promotes public engagement with space exploration themes, aiming to increase understanding of the benefits to humanity and enhance science literacy.
      “Megan brought a unique combination of technical skill and compassion to everything she did,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “Whether in space or on the ground, she embodied the best of what it means to be an astronaut and a teammate. Her contributions will be felt by the next generation of explorers she helped train.”
      McArthur was born in Honolulu and raised as a “Navy kid” in many different locations worldwide. She earned a Bachelor of Science in aerospace engineering from the University of California, Los Angeles, and a doctorate in oceanography from the Scripps Institution of Oceanography at the University of California, San Diego. Before being selected as an astronaut in 2000, she conducted oceanographic research focusing on underwater acoustics, which involved shipboard work and extensive scuba diving.
      McArthur is married to former NASA astronaut Robert Behnken, who also flew aboard the Dragon Endeavour spacecraft during the agency’s SpaceX Demo-2 mission in 2020.
      “It was an incredible privilege to serve as a NASA astronaut, working with scientists from around the world on cutting-edge research that continues to have a lasting impact here on Earth and prepares humanity for future exploration at the Moon and Mars,” said McArthur. “From NASA’s Hubble Space Telescope to the International Space Station, our research lab in low Earth orbit, humanity has developed incredible tools that help us answer important scientific questions, solve complex engineering challenges, and gain a deeper understanding of our place in the universe. Seeing our beautiful planet from space makes it so clear how fragile and precious our home is, and how vital it is that we protect it. I am grateful I had the opportunity to contribute to this work, and I’m excited to watch our brilliant engineers and scientists at NASA conquer new challenges and pursue further scientific discoveries for the benefit of all.”
      To learn more about NASA’s astronauts and their contributions to space exploration, visit:
      https://www.nasa.gov/astronauts
      -end-

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov

      View the full article
    • By NASA
      This graphic features data from NASA’s Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star’s interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA’s Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.
      Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star’s interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.
      Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.
      “It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting,” said Toshiki Sato of Meiji University in Japan who led the study. “Now we’ve taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary.”
      As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements – extending all the way down to the center of the star. 
      Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.
      The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.
      “Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon,” said co-author Kai Matsunaga of Kyoto University in Japan. “This is a violent event where the barrier between these two layers disappears.”
      This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A’s supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon. 
      The survival of these regions not only provides critical evidence for the star’s upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.
      There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.
      Finally, the strong turbulent flows created by the star’s internal changes may have promoted the development of the supernova blast wave, facilitating the star’s explosion.
      “Perhaps the most important effect of this change in the star’s structure is that it may have helped trigger the explosion itself,” said co-author Hiroyuki Uchida, also of Kyoto University. “Such final internal activity of a star may change its fate—whether it will shine as a supernova or not.”
      These results have been published in the latest issue of The Astrophysical Journal and are available online.
      To learn more about Chandra, visit:
      https://science.nasa.gov/chandra
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of Cassiopeia A, a donut-shaped supernova remnant located about 11,000 light-years from Earth. Included in the image is an inset closeup, which highlights a region with relative abundances of silicon and neon.
      Over three hundred years ago, Cassiopeia A, or Cas A, was a star on the brink of self-destruction. In composition it resembled an onion with layers rich in different elements such as hydrogen, helium, carbon, silicon, sulfur, calcium, and neon, wrapped around an iron core. When that iron core grew beyond a certain mass, the star could no longer support its own weight. The outer layers fell into the collapsing core, then rebounded as a supernova. This explosion created the donut-like shape shown in the composite image. The shape is somewhat irregular, with the thinner quadrant of the donut to the upper left of the off-center hole.
      In the body of the donut, the remains of the star’s elements create a mottled cloud of colors, marbled with red and blue veins. Here, sulfur is represented by yellow, calcium by green, and iron by purple. The red veins are silicon, and the blue veins, which also line the outer edge of the donut-shape, are the highest energy X-rays detected by Chandra and show the explosion’s blast wave.
      The inset uses a different color code and highlights a colorful, mottled region at the thinner, upper left quadrant of Cas A. Here, rich pockets of silicon and neon are identified in the red and blue veins, respectively. New evidence from Chandra indicates that in the hours before the star’s collapse, part of a silicon-rich layer traveled outwards, and broke into a neighboring neon-rich layer. This violent breakdown of layers created strong turbulent flows and may have promoted the development of the supernova’s blast wave, facilitating the star’s explosion. Additionally, upheaval in the interior of the star may have produced a lopsided explosion, resulting in the irregular shape, with an off-center hole (and a thinner bite of donut!) at our upper left.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants Supernovae The Universe Explore More
      6 min read Meet NASA’s Artemis II Moon Mission Masterminds
      Article 22 hours ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 3 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
      Scientists have devised a new method for mapping the spottiness of distant stars by using…
      Article 3 days ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robert Mosher, HIAD materials and processing lead at NASA Langley, holds up a piece of webbing material, known as Zylon, which comprise the straps of the HIAD.NASA/Joe Atkinson Components of a NASA technology that could one day help crew and cargo enter harsh planetary environments, like that of Mars, are taking an extended trip to space courtesy of the United States Space Force.
      On Aug. 21, several pieces of webbing material, known as Zylon, which comprise the straps of the HIAD (Hypersonic Inflatable Aerodynamic Decelerator) aeroshell developed by NASA’s Langley Research Center in Hampton, Virginia, launched to low Earth orbit along with other experiments aboard the Space Force’s X-37B Orbital Test Vehicle. This trip will help researchers characterize how the Zylon webbing responds to long-duration exposure to the harsh vacuum of space.
      The strap material on the HIAD aeroshell serves two purposes – short strap lengths hold together HIAD’s inflatable rings and longer pieces help to distribute the load more evenly across the cone-shaped structure. The HIAD aeroshell technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.
      “We’re researching how HIAD technology could help get humans to Mars. We want to look at the effects of long-term exposure to space – as if the Zylon material is going for a potential six to nine-month mission to Mars,” said Robert Mosher, HIAD materials and processing lead at NASA Langley. “We want to make sure we know how to protect those structural materials in the long term.”
      The Zylon straps are visible here during the inflation of LOFTID as part of a November 2022 orbital flight test. LOFTID was a version of the HIAD aeroshell — a technology that could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.NASA Flying Zylon material aboard the Space Force’s X-37B mission will help NASA researchers understand what kind of aging might occur to the webbing on a long space journey before it experiences the extreme environments of atmospheric entry, during which it has to retain strength at high temperatures.
      Multiple samples are in small canisters on the X-37B. Mosher used two different techniques to put the strap material in the canisters. Some he tightly coiled up, others he stuffed in.
      “Typically, we pack a HIAD aeroshell kind of like you pack a parachute, so they’re compressed,” he said. “We wanted to see if there was a difference between tightly coiled material and stuff-packed material like you would normally see on a HIAD.”
      Some of the canisters also include tiny temperature and humidity sensors set to collect readings at regular intervals. When the Space Force returns the samples from the X-37B flight, Mosher will compare them to a set of samples that have remained in canisters here on Earth to look for signs of degradation.
      The material launched to space aboard the Space Force’s X-37B Orbital Test Vehicle, seen here earlier this year.Courtesy of the United States Space Force “Getting this chance to have the Zylon material exposed to space for an extended period of time will begin to give us some data on the long-term packing of a HIAD,” Mosher said.
      Uninflated HIAD aeroshells can be packed into small spaces within a spacecraft. This results in a decelerator that can be much larger than the diameter of its launch vehicle and can therefore land much heavier loads and deliver them to higher elevations on a planet or other celestial body.
      Rigid aeroshells, the sizes of which are dictated by the diameters of their launch vehicles, typically 4.5 to 5 meters, are capable of landing well-equipped, car-sized rovers on Mars. By contrast, an inflatable HIAD, with an 18-20m diameter, could land the equivalent of a small, fully furnished ranch house with a car in the garage on Mars.
      NASA’s HIAD aeroshell developments build on the success of the agency’s LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) mission that launched on Nov. 10, 2022, resulting in valuable insights into how this technology performs under the stress of re-entering Earth’s atmosphere after being exposed to space for a short time period.
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/tdm/
      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Aug 27, 2025 Related Terms
      Langley Research Center Space Technology Mission Directorate Technology Demonstration Missions Program Explore More
      4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 2 days ago 2 min read NASA Tests Tools to Assess Drone Safety Over Cities
      Article 5 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 1 week ago View the full article
    • By NASA
      Titans Space Industries, a commercial space company, selected a new cohort of astronaut candidates this spring – and among them is NASA citizen scientist, Benedetta Facini. She has participated in not one, but many NASA citizen science projects: Cloudspotting on Mars, Active Asteroids, Daily Minor Planet, GLOBE, Exoasteroids and International Astronomical Collaboration (IASC). We asked her a few questions about her work with NASA and her path to becoming an astronaut candidate.
      Benedetta Facini visiting Kennedy Space Center in 2023 Credit: B.F. Q: How did you learn about NASA Citizen Science?
      A: Through colleagues and social media, I often came across people talking about Citizen Science, and this immediately caught my curiosity. I did some online research on the subject, and I asked some colleagues already involved in it. Finally, I managed to find the way to participate by exploring the programs offered by NASA Citizen Science, which impressed me with their variety.
      Q: What would you say you have gained from working on these NASA projects?
      A: Curiosity in discovering new things and a lot of patience: many projects indeed require attention and, as mentioned, patience. I was pleased to discover that even NASA relies on “ordinary people” to carry out research, giving them the opportunity to learn new things using simple tools.
      I also gained hands-on experience in analyzing real data and identifying celestial objects to contribute to real research efforts. My favorite part was to learn to recognize the pattern of clouds in data collected by the Mars Climate Sounder on the Mars Reconnaissance Orbiter.
      I have learned the importance of international collaboration: I know many citizen scientists now, and interacting with them teaches me a lot every day. 
      Q. What do you do when you’re not working on citizen science?
      A: I am a student and a science communicator. I share my knowledge and enthusiasm through social media, schools, webinars around the world, and space festivals across Italy where I have the opportunity to engage with a wide audience, from young students to adults.
      Recently, I achieved a major milestone: I was selected as an Astronaut Candidate by the commercial space company, Titans Space Industries. I am thrilled to soon begin the basic training, which marks the first step toward realizing my dream of becoming an astronaut and contributing directly to human spaceflight and scientific research.
      Q. What do you need to do to become an astronaut?
      A: Gain as much experience as possible. During astronaut selection, not only academic achievements are evaluated, but also professional and personal experiences.
      Every skill can be useful during the selection process: the ability to work in a team, which is essential during space missions; survival skills; experience as a diver, skydiver, or pilot; knowledge of other languages; and the ability to adapt to different situations.
      I would also like to debunk a myth: you don’t need to be Einstein and fit as an Olympic level athlete; you just need to be good at what you do and be healthy.
      Q: How has citizen science helped you with your career?
      A: Citizen Science was very helpful for my career as a science communicator, as it gave me the opportunity to show people that anyone can contribute to the space sector. At the same time, it has allowed me to become a mentor and a point of reference for many students (mainly with the IASC project).
      The hands-on experience I gained in analyzing real data was also very helpful for my academic career, too. I had never had real data to work with before, and this experience proved extremely valuable for the practical courses in my physics degree program.
      Q. Do you have any advice you’d like to share for other citizen scientists or for people who want to become astronauts?
      A: For other citizen scientists my advice is to stay curious and persistent.
      Don’t be afraid to ask for help and interact with other colleagues because the goal of the NASA Citizen Science program is international collaboration and every small contribution can make a difference.
      For aspiring astronauts, my advice is to gain as much experience as possible. Academic results are important but hands-on skills, teamwork, adaptability, and real experiences are also important.
      Stay passionate and never lose your curiosity; the astronaut path is challenging; don’t give up after an eventual first rejection. You will always meet people trying to make you change your mind and your dream, even people from your family, but don’t stop in front of obstacles. The greatest regret is knowing you didn’t try to make your dream come true.
      Quoting my inspiration, Italian astronaut Paolo Nespoli: “You need to have the ability and the courage to dream of impossible things. Everyone can dream of things that are possible. Dream of something impossible, one of those things that, when you say it out loud, people look at you and say: “Sure, study hard and you’ll make it,” but deep down no one really believes it. Those are the impossible things that are worth trying to do!”
      Q: Thank you for sharing your story with us! Is there anything else you would like to add?
      A: I would like to thank the team behind NASA Citizen Science.
      These projects play a crucial role in keeping students’ passion for science alive and guiding them toward a potential career in this field.
      Knowing that I have contributed to helping scientists is incredibly motivating and encourages me and students around the world to keep going, stay curious, and continue pursuing our path in the science field.
      The opportunity to participate in these projects while learning is inspiring and it reinforces the idea that everyone, regardless of their background, can make a real impact in the scientific community.
      Share








      Details
      Last Updated Aug 25, 2025 Related Terms
      Astrophysics Citizen Science Earth Science Planetary Science Explore More
      5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler


      Article


      59 minutes ago
      9 min read Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation


      Article


      1 hour ago
      2 min read Hubble Observes Noteworthy Nearby Spiral Galaxy


      Article


      3 days ago
      View the full article
    • By NASA
      NASA/Christopher LC Clark The parachute of the Enhancing Parachutes by Instrumenting the Canopy, or EPIC, test experiment deploys following an air launch from an Alta X drone on June 4, 2025, at NASA’s Armstrong Flight Research Center in Edwards, California. NASA researchers are developing technology to make supersonic parachutes safer and more reliable for delivering instruments and payloads to Mars.
      The flight tests were a first step toward filling gaps in computer models to improve supersonic parachutes. This work could also open the door to future partnerships, including with the aerospace and auto racing industries.
      Image Credit: NASA/Christopher LC Clark
      View the full article
  • Check out these Videos

×
×
  • Create New...