Jump to content

Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight


Recommended Posts

  • Publishers
Posted

Teresa Sindelar always knew she wanted to be a part of human spaceflight, but she was unsure how to make that dream a reality until a chance encounter with former NASA astronaut Tom Stafford when she was 11 years old.

The pair met in a local jewelry shop near Sindelar’s Nebraska home, where Gen. Stafford was signing autographs. In addition to his photo, Gen. Stafford gave Sindelar a valuable tip – she should check out the Kansas Cosmosphere, a space museum in Hutchinson, Kansas. “I proceeded to attend every camp the Cosmosphere offered as a student, interned during college, and worked there full time while earning my graduate degree,” Sindelar said.

A woman wearing a black-and-white striped blouse and a black blazer stands in front of a NASA flag and an American flag in an official portrait.
Official portrait of Teresa Sindelar.
NASA

She discovered a passion for teaching and mentoring young students through her work in the museum’s education department and a stint as a high school science teacher. When she began looking for opportunities at NASA, she sought a position that melded instruction with technical work. “I like pouring into others and watching them grow,” she said.

Today, Sindelar is a chief training officer (CTO) within the Flight Operations Directorate at NASA’s Johnson Space Center in Houston. Along with her fellow CTOs, Sindelar oversees the correct and complete training of NASA astronauts, crew members representing international partners, and all flight controllers. “I put the pieces together,” she said. “It is my job to make sure instructors, schedulers, outside partners, facility managers, and others are all in sync.” She added that CTOs have a unique position because they see the big picture of a training flow and understand the long-term training goals and objectives.

A woman in business casual attire receives a plaque from a male astronaut wearing a blue flight suit.
Teresa Sindelar received a 2025 Space Flight Awareness Program Honoree Award, presented by NASA astronaut Randy Bresnik.
NASA

“I get to do a lot of cool things and go to a lot of cool places,” she said, noting that the training facilities at Johnson and other NASA centers, as well as facilities managed by international partners, are top-notch. While she does enjoy watching astronauts work through problems and learn new systems, she has a special fondness for flight controller training and mentoring young professionals. “What fills my cup the most is seeing a brand-new employee right out of college blossom into a confident flight controller, do their job well, and make our missions better,” she said. “I like knowing that I had something to do with that.”

Sindelar has been part of the Johnson team since 2010 and worked as an educator in what was then called the center’s Office of Education and as a crew training instructor in the Space Medicine Operations Directorate before becoming a CTO. In March 2025, Sindelar received a Space Flight Awareness Program Honoree Award for her outstanding leadership in the Private Astronaut Mission (PAM) program, which is an important component of NASA’s strategy for enabling a robust and competitive commercial economy in low Earth orbit. As the lead CTO for the third PAM, Axiom Mission 3, Sindelar managed training while identifying critical inefficiencies, enhancing mission safety and performance. She spearheaded a key stakeholder retreat to streamline operations, reorganized training resources for improved accessibility, and implemented efficiency improvements that optimized mission support. Sindelar’s work was recognized during an award ceremony at NASA’s Kennedy Space Center in Florida, and she got to attend the launch of NASA’s SpaceX Crew-10 mission as a special guest.

In her 15 years with the agency, she has learned the importance of leading by example. “My team needs to see that I meet the bar I set,” she said. “Leading is about motivating your people so they are committed, not just compliant.”

Five astronauts and cosmonauts wearing matching blue polo shirts pose for a group photo with a group of four men and women wearing black shirts. They hold an Expedition 48 sign.
Teresa Sindelar (front row, third from left) and her Space Medicine Operations crew training team with the crew members of Expedition 48.
NASA

Keeping a team motivated and on track is particularly important to training success and safety. “We only get a matter of months to train astronauts to do the most hazardous activities that humans have done, or to train flight controllers who literally have the mission and the lives of astronauts in their hands,” Sindelar said, adding that they cannot afford to have an unfocused or indifferent team.

Sindelar observed that Johnson’s training team is acutely aware of their responsibilities. “We live and work in the same communities as the crew members,” she said. “We see them at school functions, at the grocery store, at the park. We know their families are counting on us to bring their loved ones home safely.”

She has also learned that her voice matters. “When I was a young professional, I just never felt I could be influential, but the only person holding me back was me,” she said. “I had to learn to trust in my own instincts. That was definitely outside of my comfort zone.” She credits her mentors with helping her build confidence and knowing when and how to speak up. “I have had many giants of the spaceflight community mold and shape me in my career, from my counselors at the Cosmosphere all the way to flight directors and astronauts,” she said. “It is my privilege to learn from them, and I am grateful to each of them.”

Outside of work, Sindelar uses her voice in a different way – as part of her church choir. She also plays piano, stating that she is as passionate about music and volunteerism as she is about human spaceflight. She is a member of the Friendswood Volunteer Fire Department, as well, serving on its rehab team and as the department’s chaplain

A couple and their three children - two boys and one girl - stand in front of a fire engine.
Teresa Sindelar (second from right) and her family with a Friendswood Volunteer Fire Department fire engine.
Image courtesy of Teresa Sindelar

As NASA prepares to return humans to the Moon and journey on to Mars, Sindelar hopes she has taught the next generation of explorers enough so they can show the world the wonders of the universe. “This next generation will see and do things my generation never even thought of,” she said, adding that it is time for them to start leading. “Use your voice. Take care of each other along the way. Reach out and help the next one in line.”

Sindelar keeps a reminder of that important message on her desk: the picture Gen. Stafford signed all those years ago.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      CSA (Canadian Space Agency) astronaut Jeremy Hansen, alongside NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch, will launch on the Artemis II mission early next year. The crew will participate in human research studies to provide insights about how the body performs in deep space as part of this mission. Credit: (NASA/James Blair) A sweeping collection of astronaut health studies planned for NASA’s Artemis II mission around the Moon will soon provide agency researchers with a glimpse into how deep space travel influences the human body, mind, and behavior.
      During an approximately 10-day mission set to launch in 2026, NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will collect and store their saliva, don wrist monitors that track movement and sleep, and offer other essential data for NASA’s Human Research Program and other agency science teams. 
      “The findings are expected to provide vital insights for future missions to destinations beyond low Earth orbit, including Mars,” said Laurie Abadie, an aerospace engineer for the program at NASA’s Johnson Space Center in Houston, who strategizes about how to carry out studies on Artemis missions. “The lessons we learn from this crew will help us to more safely accomplish deep space missions and research,” she said.
      One study on the Artemis II mission, titled Immune Biomarkers, will explore how the immune system reacts to spaceflight. Another study, ARCHeR (Artemis Research for Crew Health and Readiness), will evaluate how crew members perform individually and as a team throughout the mission, including how easily they can move around within the confined space of their Orion spacecraft. Astronauts also will collect a standardized set of measurements spanning multiple physiological systems to provide a comprehensive snapshot of how spaceflight affects the human body as part of a third study called Artemis II Standard Measures. What’s more, radiation sensors placed inside the Orion capsule cells will collect additional information about radiation shielding functionality and organ-on-a-chip devices containing astronaut cells will study how deep space travel affects humans at a cellular level.
      “Artemis missions present unique opportunities, and challenges, for scientific research,” said Steven Platts, chief scientist for human research at NASA Johnson.
      Platts explained the mission will need to protect against challenges including exposure to higher radiation levels than on the International Space Station, since the crew will be farther from Earth.
      “Together, these studies will allow scientists to better understand how the immune system performs in deep space, teach us more about astronauts’ overall well-being ahead of a Mars mission, and help scientists develop ways to ensure the health and success of crew members,” he said.
      Another challenge is the relatively small quarters. The habitable volume inside Orion is about the size of a studio apartment, whereas the space station is larger than a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. That limitation affects everything from exercise equipment selection to how to store saliva samples.
      Previous research has shown that spaceflight missions can weaken the immune system, reactivate dormant viruses in astronauts, and put the health of the crew at risk. Saliva samples from space-based missions have enabled scientists to assess various viruses, hormones, and proteins that reveal how well the immune system works throughout the mission.
      But refrigeration to store such samples will not be an option on this mission due to limited space. Instead, for the Immune Biomarkers study, crew members will supply liquid saliva on Earth and dry saliva samples in space and on Earth to assess changes over time. The dry sample process involves blotting saliva onto special paper that’s stored in pocket-sized booklets.
      “We store the samples in dry conditions before rehydrating and reconstituting them,” said Brian Crucian, an immunologist with NASA Johnson who’s leading the study. After landing, those samples will be analyzed by agency researchers.
      For the ARCHeR study, participating crew members will wear movement and sleep monitors, called actigraphy devices, before, during, and after the mission. The monitors will enable crew members and flight controllers in mission control to study real-time health and behavioral information for crew safety, and help scientists study how crew members’ sleep and activity patterns affect overall health and performance. Other data related to cognition, behavior, and team dynamics will also be gathered before and after the mission.
      “Artemis missions will be the farthest NASA astronauts have ventured into space since the Apollo era,” said Suzanne Bell, a NASA psychologist based at Johnson who is leading the investigation. “The study will help clarify key mission challenges, how astronauts work as a team and with mission control, and the usability of the new space vehicle system.” 
      Another human research study, Artemis II Standard Measures, will involve collecting survey and biological data before, during, and after the Artemis II mission, though blood collection will only occur before and after the mission. Collecting dry saliva samples, conducting psychological assessments, and testing head, eye, and body movements will also be part of the work. In addition, tasks will include exiting a capsule and conducting simulated moonwalk activities in a pressurized spacesuit shortly after return to Earth to investigate how quickly astronauts recover their sense of balance following a mission.
      Crew members will provide data for these Artemis II health studies beginning about six months before the mission and extending for about a month after they return to Earth.
      NASA also plans to use the Artemis II mission to help scientists characterize the radiation environment in deep space. Several CubeSats, shoe-box sized satellites that will be deployed into high-Earth orbit during Orion’s transit to the Moon, will probe the near-Earth and deep space radiation environment. Data gathered by these CubeSats will help scientists understand how best to shield crew and equipment from harmful space radiation at various distances from Earth.
      Crew members will also keep dosimeters in their pockets that measure radiation exposure in real time. Two additional radiation-sensing technologies will also be affixed to the inside of the Orion spacecraft. One type of device will monitor the radiation environment at different shielding locations and alert crew if they need to seek shelter, such as during a solar storm. A separate collection of four radiation monitors, enabled through a partnership with the German Space Agency DLR, will be placed at various points around the cabin by the crew after launch to gather further information.
      Other technologies also positioned inside the spacecraft will gather information about the potential biological effects of the deep space radiation environment. These will include devices called organ chips that house human cells derived from the Artemis II astronauts, through a project called AVATAR (A Virtual Astronaut Tissue Analog Response). After the Artemis II lands, scientists will analyze how these organ chips responded to deep space radiation and microgravity on a cellular level.
      Together, the insights from all the human research science collected through this mission will help keep future crews safe as humanity extends missions to the Moon and ventures onward to Mars.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, the International Space Station and Artemis missions, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives the program’s quest to innovate ways that keep astronauts healthy and mission ready as human space exploration expands to the Moon, Mars, and beyond.
      Explore More
      9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 20 hours ago 5 min read NASA’s Northrop Grumman CRS-23 Infographics & Hardware
      Article 20 hours ago 4 min read NASA Uses Colorado Mountains for Simulated Artemis Moon Landing Course
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      NASA Stennis Buffer ZoneNASA / Stennis NASA’s Stennis Space Center is widely known for rocket propulsion testing, especially to support the NASA Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars.
      What may not be so widely known is that the site also is a unique federal city, home to more than 50 federal, state, academic, and commercial tenants and serving as both a model of government efficiency and a powerful economic engine for its region.
      “NASA Stennis is a remarkable story of vision and innovation,” Center Director John Bailey said. “That was the case 55 years ago when the NASA Stennis federal city was born, and it remains the case today as we collaborate and grow to meet the needs of a changing aerospace world.”
      Apollo Years
      Nearly four years after its first Saturn V stage test, NASA’s Stennis Space Center faced a crossroads to the future. Indeed, despite its frontline role in supporting NASA’s Apollo lunar effort, it was not at all certain a viable future awaited the young rocket propulsion test site.
      In 1961, NASA announced plans to build a sprawling propulsion test site in south Mississippi to support Apollo missions to the Moon. The news was a significant development for the sparsely populated Gulf Coast area.  
      The new site, located near Bay St. Louis, Mississippi, conducted its first hot fire of a Saturn V rocket stage in April 1966. Saturn V testing progressed steadily during the next years. In fall 1969, however, NASA announced an end to Apollo-related testing, leading to an existential crisis for the young test site.
      What was to become of NASA Stennis?
      An Expanded Vision
      Some observers speculated the location would close or be reduced to caretaker status, with minimal staffing. Either scenario would deliver a serious blow to the families who had re-located to make way for the site and the local communities who had heavily invested in municipal projects to support the influx of workforce personnel.
      Such outcomes also would run counter to assurances provided by leaders that the new test site would benefit its surrounding region and involve area residents in “something great.”
      For NASA Stennis manager Jackson Balch and others, such a result was unacceptable. Anticipating the crisis, Balch had been working behind the scenes to communicate – and realize – the vision of a multiagency site supporting a range of scientific and technological tenants and missions.
      A Pivotal Year
      The months following the Saturn V testing announcement were filled with discussions and planning to ensure the future of NASA Stennis. The efforts began to come to fruition in 1970 with key developments:
      In early 1970, NASA Administrator Thomas Paine proposed locating a regional environmental center at NASA Stennis. U.S. Sen. John C. Stennis (Mississippi) responded with a message of the president, “urgently requesting” that a National Earth Resources and Environmental Data Program be established at the site. In May 1970, President Richard Nixon offered assurances that an Earth Resources Laboratory would be established at NASA Stennis and that at least two agencies are preparing to locate operations at the site. U.S. congressional leaders earmarked $10 million to enable the location of an Earth Resources Laboratory at NASA Stennis. On July 9, 1970, the U.S. Coast Guard’s National Data Buoy Project (now the National Data Buoy Center) announced it was relocating to NASA Stennis, making it the first federal city tenant. The project arrived onsite two months later on September 9. On Sept. 9, 1970, NASA officially announced establishment of an Earth Resources Laboratory at NASA Stennis. Time to Grow
      By the end of 1970, Balch’s vision was taking shape, but it needed time to grow. The final Saturn V test had been conducted in October – with no new campaign scheduled.
      A possibility was on the horizon, however. NASA was building a reusable space shuttle vehicle. It would be powered by the most sophisticated rocket engine ever designed – and the agency needed a place to conduct developmental and flight testing expected to last for decades.
      Three sites vied for the assignment. Following presentations and evaluations, NASA announced its selection on March 1, 1971. Space shuttle engine testing would be conducted at NASA Stennis, providing time for the location to grow.
      A Collaborative Model
      By the spring of 1973, preparations for the space shuttle test campaign were progressing and NASA Stennis was on its way to realizing the federal city vision. Sixteen agencies and universities were now located at NASA Stennis.
      The resident tenants followed a shared model in which they shared in the cost of basic site services, such as medical, security, and fire protection. The shared model freed up more funding for the tenants to apply towards innovation and assigned mission work. It was a model of government collaboration and efficiency.
      As the site grew, leaders then began to call for it to be granted independent status within NASA, a development not long in coming. On June 14, 1974, just more than a decade after site construction began, NASA Administrator James Fletcher announced the south Mississippi location would be renamed National Space Technology Laboratories and would enjoy equal, independent status alongside other NASA centers.
      “Something Great”
      For NASA Stennis leaders and supporters, independent status represented a milestone moment in their effort to ensure NASA Stennis delivered on its promise of greatness.
      There still were many developments to come, including the first space shuttle main engine test and the subsequent 34-year test campaign, the arrival and growth of the U.S. Navy into the predominant resident presence onsite, the renaming of the center to NASA Stennis, and the continued growth of the federal city.
      No one could have imagined it all at the time. However, even in this period of early development, one thing was clear – the future lay ahead, and NASA Stennis was on its way.
      Read More About Stennis Space Center Share
      Details
      Last Updated Sep 09, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Provides Ideal Location for Range of Site Tenants
      Article 16 minutes ago 4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 2 weeks ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 4 weeks ago View the full article
    • By NASA
      Patricia White is a contracting officer at NASA’s Stennis Space Center, where she contributes to NASA’s Artemis program that will send astronauts to the Moon to prepare for future human exploration of Mars. NASA/Danny Nowlin When NASA’s Artemis II mission launches in 2026, it will inspire the world through discovery in a new Golden Age of innovation and exploration.
      It will be another inspiring NASA moment Patricia White can add to her growing list.
      White supports the Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars as a contracting officer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      White takes special pride in the test operations contract she helped draft. The contract provides support to the Fred Haise Test Stand, which tests the RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket on Artemis missions.
      “I was awestruck the first time I witnessed an engine test,” White said. “I remember how small I felt in comparison to this big and fascinating world, and I wondered what that engine would see that I would never be able to see.”
      Four RS-25 engines tested at NASA Stennis will help launch Artemis II with four astronauts to venture around the Moon. As the first crewed Artemis mission, it will represent another milestone for the nation’s human space exploration effort.
      From Interstate Signs to NASA Career
      White describes NASA Stennis as a hidden gem. Growing up in nearby Slidell, Louisiana, she had driven by the interstate signs pointing toward NASA Stennis her entire life.
      When she heard about a job opportunity at the center, she immediately applied. Initially hired as a contractor with only a high school diploma in February 2008, White found her motivation among NASA’s ranks.
      “I work with very inspiring people, and it only took one person to say, ‘You should go to college’ to give me the courage to go so late in life,” she said.
      Hard But Worth It
      White began college classes in her 40s and finished at 50. She balanced a marriage, full-time job, academic studies, and household responsibilities. When she started her educational journey, her children were either toddlers or newborns. They were growing up as she stayed in school for nine years while meeting life’s challenges.
      “It was hard, but it was so worth it,” she said. “I love my job and what I do, and even though it is crazy busy, I look forward to working at NASA every single day.”
      She joined NASA officially in 2013, going from contractor to civil servant.
      Setting an Example
      White’s proudest work moment came when she brought home the NASA Early Career Achievement award and medal. It served as a tangible symbol of her success she could share with her family.
      “It was a long road from being hired as an intern, and we all made extraordinary sacrifices,” she said. “I wanted to share it with them and set a good example for my children.”
      As Artemis II prepares to carry humans back to lunar orbit for the first time in over 50 years, White takes pride knowing her work helps power humanity’s return to deep space exploration. Her work is proof that sometimes the most important journeys begin right in one’s own backyard.
      Learn More About Careers at NASA Stennis Explore More
      4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 1 week ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 3 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 4 months ago View the full article
    • By NASA
      NASA’s Human Lander Challenge (HuLC) is an initiative supporting its Exploration Systems Development Mission Directorate’s (ESDMD’s) efforts to explore innovative solutions for a variety of known technology development areas for human landing systems (HLS). Landers are used to safely ferry astronauts to and from the lunar surface as part of the mission architecture for NASA’s Artemis campaign. Through this challenge, college students contribute to the advancement of HLS technologies, concepts, and approaches. Improvements in these technology areas have the potential to revolutionize NASA’s approach to space exploration, and contributions from the academic community are a valuable part of the journey to discovery. HuLC is open to teams comprised of full-time or part-time undergraduate and/or graduate students at an accredited U.S.-based community college, college, or university. HuLC projects allow students to incorporate their coursework into real aerospace design concepts and work together in a team environment. Interdisciplinary teams are encouraged.
      Award: $126,000 in total prizes
      Open Date: August 29, 2025
      Close Date: March 4, 2026
      For more information, visit: https://hulc.nianet.org/
      View the full article
    • By Space Force
      More than 80 officers completed the year-long program, marking a new era in how the Space Force trains and develops its commissioned force.
      View the full article
  • Check out these Videos

×
×
  • Create New...