Jump to content

Recommended Posts

  • Publishers
Posted
54474123971-6cbcb7a0d4-k.png?w=2048
The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX).

NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.

The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.

Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.

“Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”

A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.

“Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”

Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  

Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.

Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.

Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.

After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.

NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Aubrey Gemignani A SpaceX Falcon 9 rocket carrying the SpaceX Dragon spacecraft Endeavour lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Aug. 1, 2025. NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov are aboard the spacecraft. After the crew arrives at the International Space Station, they will perform research, technology demonstrations, and maintenance activities aboard the orbiting laboratory. Crew-11 will also contribute to NASA’s Artemis campaign by simulating Moon landing scenarios that astronauts may encounter near the lunar South Pole, showing how the space station helps prepare crews for deep space human exploration.
      The flight is the 11th crew rotation mission with SpaceX to the space station as part of NASA’s Commercial Crew Program.
      Image credit: NASA/Aubrey Gemignani
      View the full article
    • By NASA
      NASA’s SpaceX Crew-11 Arrival & Welcome Remarks
    • By NASA
      A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-11 mission to the International Space Station with NASA astronauts Zena Cardman, Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov onboard, Friday, Aug. 1, 2025, from NASA’s Kennedy Space Center in Florida. NASA’s SpaceX Crew-11 mission is the eleventh crew rotation mission of the SpaceX Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. Cardman, Fincke, Yui, Platonov launched at 11:43 a.m. EDT from Launch Complex 39A at the NASA’s Kennedy Space Center to begin a six month mission aboard the orbital outpost. Credit: NASA/Aubrey Gemignani Four crew members of NASA’s SpaceX Crew-11 mission launched at 11:43 a.m. EDT Friday from Launch Complex 39A at the agency’s Kennedy Space Center in Florida for a science expedition aboard the International Space Station.
      A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov. The spacecraft will dock autonomously to the space-facing port of the station’s Harmony module at approximately 3 a.m. on Saturday, Aug. 2.
      “Thanks to the bold leadership of President Donald J. Trump, NASA is back! The agency’s SpaceX Crew-11 mission to the space station is the first step toward our permanent presence on the Moon. NASA, in conjunction with great American companies, continues the mission with Artemis in 2026. This Moon mission will ensure America wins the space race – critical to national security – and leads in the emerging, exciting and highly profitable private sector commercial space business,” said acting NASA Administrator Sean Duffy. “The Commercial Crew Program and Artemis missions prove what American ingenuity, and cutting-edge American manufacturing can achieve. We’re going to the Moon…to stay! After that, we go to Mars! Welcome to the Golden Age of exploration!”
      During Dragon’s flight, SpaceX will monitor a series of automatic spacecraft maneuvers from its mission control center in Hawthorne, California. NASA will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.
      NASA’s live coverage resumes at 1 a.m., Aug. 2, on NASA+ with rendezvous, docking, and hatch opening. After docking, the crew will change out of their spacesuits and prepare cargo for offload before opening the hatch between Dragon and the space station’s Harmony module around 4:45 a.m. Once the new crew is aboard the orbital outpost, NASA will provide coverage of the welcome ceremony beginning at approximately 5:45 a.m.
      Learn how to watch NASA content through a variety of platforms, including social media.
      The number of crew aboard the space station will increase to 11 for a short time as Crew-11 joins NASA astronauts Anne McClain, Nichole Ayers, and Jonny Kim, JAXA astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Sergey Ryzhikov, and Alexey Zubritsky.
      NASA’s SpaceX Crew-10 will depart the space station after the arrival of Crew-11 and a handover period. Ahead of Crew-10’s return, mission teams will review weather conditions at the splashdown sites off the coast of California prior to departure from station.
      During their mission, Crew-11 will conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Participating crew members will simulate lunar landings, test strategies to safeguard vision, and advance other human spaceflight studies led by NASA’s Human Research Program. The crew also will study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station.
      Learn more about the agency’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 01, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) ISS Research SpaceX Commercial Resupply View the full article
    • By NASA
      NASA’s SpaceX Crew-11 Postlaunch News Conference
    • By European Space Agency
      Image: Webb takes a fresh look at a classic deep field View the full article
  • Check out these Videos

×
×
  • Create New...