Jump to content

Recommended Posts

  • Publishers
Posted
This artist’s concept animation shows the orbital dynamics of KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c.
NASA/JPL-Caltech/K. Miller (Caltech/IPAC)

The Planets

KOI-134 b and KOI-134 c 

This artist's concept shows a star in the upper right-hand corner, a large planet across screen on the left side with a blue trail indicating its orbital path behind it and a smaller planet is seen on the lower right-hand side with a green trail behind it indicating its orbital path.
This artist’s concept shows the KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c.
NASA/JPL-Caltech/K. Miller (Caltech/IPAC)

The Discovery

A new investigation into old Kepler data has revealed that a planetary system once thought to house zero planets actually has two planets which orbit their star in a unique style, like an old-fashioned merry-go-round. 

Key Facts

The KOI-134 system contains two planets which orbit their star in a peculiar fashion on two different orbital planes, with one planet exhibiting significant variation in transit times. This is the first-discovered system of its kind. 

Details 

Over a decade ago, scientists used NASA’s Kepler Space Telescope to observe the KOI-134 system and thought that it might have a planet orbiting, but they deemed this planet candidate to be a false positive, because its transits (or passes in front of its star) were not lining up as expected. These transits were so abnormal that the planet was actually weeded out through an automated system as a false positive before it could be analyzed further. 

However, NASA’s commitment to openly sharing scientific data means that researchers can constantly revisit old observations to make new discoveries. In this new study, researchers re-analyzed this Kepler data on KOI-134 and confirmed that not only is the “false positive” actually a real planet, but the system has two planets and some really interesting orbital dynamics! 

First, the “false positive” planet, named KOI-134 b, was confirmed to be a warm Jupiter (or a warm planet of a similar size to Jupiter). Through this analysis, researchers uncovered that the reason this planet eluded confirmation previously is because it experiences what are called transit timing variations (TTVs), or small differences in a planet’s transit across its star that can make its transit “early” or “late” because the planet is being pushed or pulled by the gravity from another planet which was also revealed in this study. Researchers estimate that KOI-134 b transits across its star as much as 20 hours “late” or “early,” which is a significant variation. In fact, it was so significant that it’s the reason why the planet wasn’t confirmed in initial observations. 

As these TTVs are caused by the gravitational interaction with another planet, this discovery also revealed a planetary sibling: KOI-134 c. Through studying this system in simulations that include these TTVs, the team found that KOI-134 c is a planet slightly smaller than Saturn and closer to its star than KOI-134 b. 

This artist's concept shows a star in the upper right-hand corner, a planet across screen on the left side with a blue trail indicating its orbital path behind it and a smaller planet is seen on the lower right-hand side with a green trail behind it indicating its orbital path.
This artist’s concept shows the KOI-134 system which, in 2025, a paper revealed to have two planets: KOI-134 b and KOI-134 c.
NASA/JPL-Caltech/K. Miller (Caltech/IPAC)

KOI-134 c previously eluded observation because it orbits on a tilted orbital plane, a different plane from KOI-134 b, and this tilted orbit prevents the planet from transiting its star. The two orbital planes of these planets are about 15 degrees different from one another, also known as a mutual inclination of 15 degrees, which is significant. Due to the gravitational push and pull between these two planets, their orbital planes also tilt back and forth. 

Another interesting feature of this planetary system is something called resonance. These two planets have a 2 to 1 resonance, meaning within the same time that one planet completes one orbit, the other completes two orbits. In this case, KOI-134 b has an orbital period (the time it takes a planet to complete one orbit) of about 67 days, which is twice the orbital period of KOI-134 c, which orbits every 33-34 days. 

Between the separate orbital planes tilting back and forth, the TTVs, and the resonance, the two planets orbit their star in a pattern that resembles two wooden ponies bobbing up and down as they circle around on an old-fashioned merry go round. 

Fun Facts

While this system started as a false positive with Kepler, this re-analysis of the data reveals a vibrant system with two planets. In fact, this is the first-ever discovered compact, multiplanetary system that isn’t flat, has such a significant TTV, and experiences orbital planes tilting back and forth. 

Also, most planetary systems do not have high mutual inclinations between close planet pairs. In addition to being a rarity, mutual inclinations like this are also not often measured because of challenges within the observation process. So, having measurements like this of a significant mutual inclination in a system, as well as measurements of resonance and TTVs, provides a clear picture of dynamics within a planetary system which we are not always able to see. 

The Discoverers

A team of scientists led by Emma Nabbie of the University of Southern Queensland published a paper on June 27 on their discovery, “A high mutual inclination system around KOI-134 revealed by transit timing variations,” in the journal “Nature Astronomy.” The observations described in this paper and used in simulations in this paper were made by NASA’s Kepler Space Telescope and the paper included collaboration and contributions from institutions including the University of Geneva, University of La Laguna, Purple Mountain Observatory, the Harvard-Smithsonian Center for Astrophysics, the Georgia Institute of Technology, the University of Southern Queensland, and NASA’s retired Kepler Space Telescope.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA’s Apollo Samples, LRO Help Scientists Predict Moonquakes
      This mosaic of the Taurus-Littrow valley was made using images from the Narrow Angle Cameras onboard NASA’s Lunar Reconnaissance Orbiter. The orbiter has been circling and studying the Moon since 2009. The ancient-lava-filled valley is cut by the Lee-Lincoln thrust fault, visible as a sinuous, white line extending from South Massif (mountain in the bottom left corner) to North Massif (mountain in the top center) where the fault abruptly changes direction and cuts along the slope of North Massif. The Lee-Lincoln fault has been the source of multiple strong moonquakes causing landslides and boulder falls on both North and South massifs. The approximate location of the Apollo 17 landing site is indicated to the right of the fault with a white “x”. NASA/ASU/Smithsonian As NASA prepares to send astronauts to the surface of the Moon’s south polar region for the first time ever during the Artemis III mission, scientists are working on methods to determine the frequency of moonquakes along active faults there.
      Faults are cracks in the Moon’s crust that indicate that the Moon is slowly shrinking as its interior cools over time. The contraction from shrinking causes the faults to move suddenly, which generates quakes. Between 1969 and 1977, a network of seismometers deployed by Apollo astronauts on the Moon’s surface recorded thousands of vibrations from moonquakes.
      Moonquakes are rare, with the most powerful ones, about magnitude 5.0, occurring near the surface. These types of quakes are much weaker than powerful quakes on Earth (magnitude 7.0 or higher), posing little risk to astronauts during a mission lasting just a few days. But their effects on longer-term lunar surface assets could be significant. Unlike an earthquake that lasts for tens of seconds to minutes, a moonquake can last for hours, enough time to damage or tip over structures, destabilize launch vehicles on the surface, or interrupt surface operations.
      “The hazard probability goes way up depending on how close your infrastructure is to an active fault,” said Thomas Watters, senior scientist emeritus at the Smithsonian’s National Air & Space Museum in Washington.
      Watters is a long-time researcher of lunar geology and a co-investigator on NASA’s LRO (Lunar Reconnaissance Orbiter) camera. Recently, he and Nicholas Schmerr, a planetary seismologist at the University of Maryland in College Park, developed a new method for estimating the magnitude of seismic shaking by analyzing evidence of dislodged boulders and landslides in an area, as the scientists reported on July 30 in the journal Science Advances. Studies like these can help NASA plan lunar surface assets in safer locations.
      Unlike an earthquake that lasts for tens of seconds to minutes, a moonquake can last for hours, enough time to damage or tip over structures, destabilize launch vehicles on the surface, or interrupt surface operations.


      There are thousands of faults across the Moon that may still be active and producing quakes. Watters and his team have identified these faults by analyzing data from LRO, which has been circling the Moon since 2009, mapping the surface and taking pictures, providing unprecedented detail of features like faults, boulders, and landslides.
      For this study, Watters and Schmerr chose to analyze surface changes from quakes generated by the Lee-Lincoln fault in the Taurus-Littrow valley. NASA’s Apollo 17 astronauts, who landed about 4 miles west of the fault on Dec. 11, 1972, explored the area around the fault during their mission.
      By studying boulder falls and a landslide likely dislodged by ground shaking near Lee Lincoln, Watters and Schmerr estimated that a magnitude 3.0 moonquake — similar to a relatively minor earthquake — occurs along the Lee Lincoln fault about every 5.6 million years.
      “One of the things we’re learning from the Lee-Lincoln fault is that many similar faults have likely had multiple quakes spread out over millions of years,” Schmerr said. “This means that they are potentially still active today and may keep generating more moonquakes in the future.”
      The authors chose to study the Lee-Lincoln fault because it offered a unique advantage: Apollo 17 astronauts brought back samples of boulders from the area. By studying these samples in labs, scientists were able to measure changes in the boulders’ chemistry caused by exposure to cosmic radiation over time (the boulder surface is freshly exposed after breaking off a larger rock that would have otherwise shielded it).
      This cosmic radiation exposure information helped the researchers determine how long the boulders had been sitting in their current locations, which in turn helped inform the estimate of possible timing and frequency of quakes along the Lee-Lincoln fault.
      This 1972 image shows Apollo 17 astronaut Harrison H. Schmitt sampling a boulder at the base of North Massif in the Taurus-Littrow valley on the Moon. This large boulder is believed to have been dislodged by a strong moonquake that occurred about 28.5 million years ago. The source of the quake was likely a seismic event along the Lee-Lincoln fault. The picture was taken by astronaut Eugene A. Cernan, Apollo 17 commander. NASA/JSC/ASU Apollo 17 astronauts investigated the boulders at the bases of two mountains in the valley. The tracks left behind indicated that the boulders may have rolled downhill after being shaken loose during a moonquake on the fault. Using the size of each boulder, Watters and Schmerr estimated how hard the ground shaking would have been and the magnitude of the quake that would have caused the boulders to break free.
      The team also estimated the seismic shaking and quake magnitude that would be needed to trigger the large landslide that sent material rushing across the valley floor, suggesting that this incident caused the rupture event that formed the Lee-Lincoln fault.
      A computer simulation depicting the seismic waves emanating from a shallow moonquake on the Lee-Lincoln fault in the Taurus-Littrow valley on the Moon. The label “A17” marks the Apollo 17 landing site. The audio represents a moonquake that was recorded by a seismometer placed on the surface by astronauts. The seismic signal is converted into sound. Both audio and video are sped up to play 10 times faster than normal. The background image is a globe mosaic image from NASA’s Lunar Reconnaissance Orbiter’s Wide-Angle Camera. Red and blue are positive (upward ground motion) and negative (downward ground motion) polarities of the wave. Nicholas Schmerr Taking all these factors into account, Watters and Schmerr estimated that the chances that a quake would have shaken the Taurus-Littrow valley on any given day while the Apollo 17 astronauts were there are 1 in 20 million, the authors noted.
      Their findings from the Lee-Lincoln fault are just the beginning. Watters and Schmerr now plan to use their new technique to analyze quake frequency at faults in the Moon’s south polar region, where NASA plans to explore.
      NASA also is planning to send more seismometers to the Moon. First, the Farside Seismic Suite will deliver two sensitive seismometers to Schrödinger basin on the far side of the Moon onboard a lunar lander as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Additionally, NASA is developing a payload, called the Lunar Environment Monitoring Station, for potential flight on NASA’s Artemis III mission to the South Pole region. Co-led by Schmerr, the payload will assess seismic risks for future human and robotic missions to the region.

      Read More: What Are Moonquakes?


      Read More: Moonquakes and Faults Near Lunar South Pole

      For more information on NASA’s LRO, visit:

      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600 
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      lonnie.shekhtman@nasa.gov
      About the Author
      Lonnie Shekhtman

      Share








      Details
      Last Updated Aug 14, 2025 Related Terms
      Apollo Apollo 17 Artemis Artemis 3 Artemis Campaign Development Division Earth’s Moon Exploration Systems Development Mission Directorate Goddard Space Flight Center Humans in Space Lunar Reconnaissance Orbiter (LRO) Missions NASA Centers & Facilities NASA Directorates Planetary Geosciences & Geophysics Planetary Science Planetary Science Division Science & Research Science Mission Directorate The Solar System Explore More
      4 min read Compton J. Tucker Retires from NASA and is Named NAS Fellow


      Article


      21 hours ago
      5 min read NASA’s Hubble Uncovers Rare White Dwarf Merger Remnant


      Article


      1 day ago
      6 min read Webb Narrows Atmospheric Possibilities for Earth-sized Exoplanet TRAPPIST-1 d


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By USH
      In March 2025, a perfectly smooth metallic sphere crashed near the city of Buga, Colombia, setting in motion a chain of revelations that could rewrite the story of human history. Weighing just 4.5 pounds, the object has no visible seams, joints, or welds. It remains icy cold to the touch and shows no sign of conventional propulsion or manufacturing methods known to science. 
      Buga Sphere
      Its surface is etched with intricate markings eerily similar to symbols from ancient Mesopotamia, as well as other civilizations separated by oceans and thousands of years. AI-assisted analysis suggests the glyphs carry profound themes—unity, transformation, and the origins of consciousness, concepts that cannot easily be reconciled within the framework of standard physics. 
      Advanced scans have revealed hidden internal structures and an unusually dense core. Even more unsettling, researchers have detected the sphere emitting very low frequency (VLF) and low frequency (LF) radio waves—signals capable of traveling hundreds of kilometers over terrain and far beyond the horizon, often used in navigation, communications, and precise timing synchronization. 
      Whispers are now spreading about the discovery of a second, even older sphere, quietly stored in a forgotten museum collection. Meanwhile, the glyphs on the Buga sphere appear to be slowly evolving, forming what some believe are coordinates pointing toward remote and mysterious sites: deep within the Amazon, along the shores of Lake Titicaca, and in the highlands of Peru. 
      This has led to a question, is it just an elaborate hoax or are these spheres fragments of a hidden planetary network, and if so… what happens when it awakens?
        View the full article
    • By European Space Agency
      More than one star contributes to the irregular shape of NGC 6072 – Webb’s newest look at this planetary nebula in the near- and mid-infrared shows what may appear as a very messy scene resembling splattered paint. However, the unusual, asymmetrical scene hints at more complicated mechanisms underway, as the star central to the scene approaches the very final stages of its life and expels shells of material, losing up to 80 percent of its mass.
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Traces Details of Complex Planetary Nebula
      NASA’s James Webb Space Telescope’s view of planetary nebula NGC 6072 in the near-infrared shows a complex scene of multiple outflows expanding out at different angles from a dying star at the center of the scene. In this image, the red areas represent cool molecular gas, for example, molecular hydrogen. Full image below. Credits:
      NASA, ESA, CSA, STScI Since their discovery in the late 1700s, astronomers have learned that planetary nebulae, or the expanding shell of glowing gas expelled by a low-intermediate mass star late in its life, can come in all shapes and sizes. Most planetary nebula present as circular, elliptical, or bi-polar, but some stray from the norm, as seen in new high-resolution images of planetary nebulae by NASA’s James Webb Space Telescope.
      Webb’s newest look at planetary nebula NGC 6072 in the near- and mid-infrared shows what may appear as a very messy scene resembling splattered paint. However, the unusual, asymmetrical appearance hints at more complicated mechanisms underway, as the star central to the scene approaches the very final stages of its life and expels shells of material, losing up to 80 percent of its mass. Astronomers are using Webb to study planetary nebulae to learn more about the full life cycle of stars and how they impact their surrounding environments.
      Image A: NGC 6072 (NIRCam Image)
      NASA’s James Webb Space Telescope’s view of planetary nebula NGC 6072 in the near-infrared shows a complex scene of multiple outflows expanding out at different angles from a dying star at the center of the scene. In this image, the red areas represent cool molecular gas, for example, molecular hydrogen. NASA, ESA, CSA, STScI First, taking a look at the image from Webb’s NIRCam (Near-Infrared Camera), it’s readily apparent that this nebula is multi-polar. This means there are several different elliptical outflows jetting out either way from the center, one from 11 o’clock to 5 o’clock, another from 1 o’clock to 7 o’clock, and possibly a third from 12 o’clock to 6 o’clock. The outflows may compress material as they go, resulting in a disk seen perpendicular to it.
      Astronomers say this is evidence that there are likely at least two stars at the center of this scene. Specifically, a companion star is interacting with an aging star that had already begun to shed some of its outer layers of gas and dust.
      The central region of the planetary nebula glows from the hot stellar core, seen as a light blue hue in near-infrared light. The dark orange material, which is made up of gas and dust, follows pockets or open areas that appear dark blue. This clumpiness could be created when dense molecular clouds formed while being shielded from hot radiation from the central star. There could also be a time element at play. Over thousands of years, inner fast winds could be ploughing through the halo cast off from the main star when it first started to lose mass.
      Image B: NGC 6072 (MIRI Image)
      The mid-infrared view of planetary nebula NGC 6072 from NASA’s James Webb Space Telescope show expanding circular shells around the outflows from the dying central star. In this image, the blue represents cool molecular gas seen in red in the image from Webb’s NIRCam (Near-Infrared Camera) due to color mapping. NASA, ESA, CSA, STScI The longer wavelengths captured by Webb’s MIRI (Mid-Infrared Instrument) are highlighting dust, revealing the star researchers suspect could be central to this scene. It appears as a small pinkish-whitish dot in this image.
      Webb’s look in the mid-infrared wavelengths also reveals concentric rings expanding from the central region, the most obvious circling just past the edges of the lobes.
      This may be additional evidence of a secondary star at the center of the scene hidden from our view. The secondary star, as it circles repeatedly around the original star, could have carved out rings of material in a bullseye pattern as the main star was expelling mass during an earlier stage of its life.
      The rings may also hint at some kind of pulsation that resulted in gas or dust being expelled uniformly in all directions separated by say, thousands of years.
      The red areas in NIRCam and blue areas in MIRI both trace cool molecular gas (likely molecular hydrogen) while central regions trace hot ionized gas.
      As the star at the center of a planetary nebula cools and fades, the nebula will gradually dissipate into the interstellar medium — contributing enriched material that helps form new stars and planetary systems, now containing those heavier elements.
      Webb’s imaging of NGC 6072 opens the door to studying how the planetary nebulae with more complex shapes contribute to this process.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View more Webb planetary nebula images
      Learn more about planetary nebula
      Interactive: Explore the Helix Nebula planetary nebula
      Watch ViewSpace videos about planetary nebulas
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Jul 30, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Goddard Space Flight Center Astrophysics James Webb Space Telescope (JWST) Nebulae Planetary Nebulae Science & Research Stars The Universe White Dwarfs View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory team up to identify a possible intermediate-mass black hole. Credits:
      NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a new possible example of a rare class of black holes. Called NGC 6099 HLX-1, this bright X-ray source seems to reside in a compact star cluster in a giant elliptical galaxy.
      Just a few years after its 1990 launch, Hubble discovered that galaxies throughout the universe can contain supermassive black holes at their centers weighing millions or billions of times the mass of our Sun. In addition, galaxies also contain as many as millions of small black holes weighing less than 100 times the mass of the Sun. These form when massive stars reach the end of their lives.
      Far more elusive are intermediate-mass black holes (IMBHs), weighing between a few hundred to a few 100,000 times the mass of our Sun. This not-too-big, not-too-small category of black holes is often invisible to us because IMBHs don’t gobble as much gas and stars as the supermassive ones, which would emit powerful radiation. They have to be caught in the act of foraging in order to be found. When they occasionally devour a hapless bypassing star — in what astronomers call a tidal disruption event— they pour out a gusher of radiation.
      The newest probable IMBH, caught snacking in telescope data, is located on the galaxy NGC 6099’s outskirts at approximately 40,000 light-years from the galaxy’s center, as described in a new study in the Astrophysical Journal. The galaxy is located about 450 million light-years away in the constellation Hercules.
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star. Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) Astronomers first saw an unusual source of X-rays in an image taken by Chandra in 2009. They then followed its evolution with ESA’s XMM-Newton space observatory.
      “X-ray sources with such extreme luminosity are rare outside galaxy nuclei and can serve as a key probe for identifying elusive IMBHs. They represent a crucial missing link in black hole evolution between stellar mass and supermassive black holes,” said lead author Yi-Chi Chang of the National Tsing Hua University, Hsinchu, Taiwan.
      X-ray emission coming from NGC 6099 HLX-1 has a temperature of 3 million degrees, consistent with a tidal disruption event. Hubble found evidence for a small cluster of stars around the black hole. This cluster would give the black hole a lot to feast on, because the stars are so closely crammed together that they are just a few light-months apart (about 500 billion miles).
      The suspected IMBH reached maximum brightness in 2012 and then continued declining to 2023. The optical and X-ray observations over the period do not overlap, so this complicates the interpretation. The black hole may have ripped apart a captured star, creating a plasma disk that displays variability, or it may have formed a disk that flickers as gas plummets toward the black hole.
      “If the IMBH is eating a star, how long does it take to swallow the star’s gas? In 2009, HLX-1 was fairly bright. Then in 2012, it was about 100 times brighter. And then it went down again,” said study co-author Roberto Soria of the Italian National Institute for Astrophysics (INAF). “So now we need to wait and see if it’s flaring multiple times, or there was a beginning, there was peak, and now it’s just going to go down all the way until it disappears.”
      The IMBH is on the outskirts of the host galaxy, NGC 6099, about 40,000 light-years from the galaxy’s center. There is presumably a supermassive black hole at the galaxy’s core, which is currently quiescent and not devouring a star.
      Black Hole Building Blocks
      The team emphasizes that doing a survey of IMBHs can reveal how the larger supermassive black holes form in the first place. There are two alternative theories. One is that IMBHs are the seeds for building up even larger black holes by coalescing together, since big galaxies grow by taking in smaller galaxies. The black hole in the middle of a galaxy grows as well during these mergers. Hubble observations uncovered a proportional relationship: the more massive the galaxy, the bigger the black hole. The emerging picture with this new discovery is that galaxies could have “satellite IMBHs” that orbit in a galaxy’s halo but don’t always fall to the center.
      Another theory is that the gas clouds in the middle of dark-matter halos in the early universe don’t make stars first, but just collapse directly into a supermassive black hole. NASA’s James Webb Space Telescope’s discovery of very distant black holes being disproportionately more massive relative to their host galaxy tends to support this idea.
      However, there could be an observational bias toward the detection of extremely massive black holes in the distant universe, because those of smaller size are too faint to be seen. In reality, there could be more variety out there in how our dynamic universe constructs black holes. Supermassive black holes collapsing inside dark-matter halos might simply grow in a different way from those living in dwarf galaxies where black-hole accretion might be the favored growth mechanism.
      “So if we are lucky, we’re going to find more free-floating black holes suddenly becoming X-ray bright because of a tidal disruption event. If we can do a statistical study, this will tell us how many of these IMBHs there are, how often they disrupt a star, how bigger galaxies have grown by assembling smaller galaxies.” said Soria.
      The challenge is that Chandra and XMM-Newton only look at a small fraction of the sky, so they don’t often find new tidal disruption events, in which black holes are consuming stars. The Vera C. Rubin Observatory in Chile, an all-sky survey telescope from the U.S. National Science Foundation and the Department of Energy, could detect these events in optical light as far as hundreds of millions of light-years away. Follow-up observations with Hubble and Webb can reveal the star cluster around the black hole.
      The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      NGC 6099 (Hubble + Chandra)
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star.


      NGC 6099 (Hubble)
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The white dot labeled HLX-1 is the visible-light component of the location of a compact star cluster where an intermediate-mass black hole is tearing apart a star.


      NGC 6099 Compass Image
      This compass image shows two elliptical galaxies, NGC 6098 at upper right and NGC 6099 at lower left. The fuzzy purple blob at bottom center shows X-ray emission produced by an intermediate-mass black hole tearing apart a star. 


      HLX-1 Illustration
      This sequence of artistic illustrations, from upper left to bottom right, shows how a black hole in the core of a star cluster captures a bypassing star and gravitationally shreds it until there is an explosion, seen in the outskirts of the host galaxy.


      HLX-1 Animation
      This video is an illustration of an intermediate-mass black hole capturing and gravitationally shredding a star. It begins by zooming into a pair of galaxies. The galaxy at lower left, NGC 6099, contain a dense star cluster at center. The video then zooms into the heart of the cl…




      Share








      Details
      Last Updated Jul 24, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center Marshall Astrophysics Marshall Space Flight Center
      Related Links and Documents
      Chinese translation of release Science Paper: Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong IMBH Candidate, PDF (1.81 MB)

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble Black Holes



      Hubble Focus: Black Holes – Into the Vortex


      View the full article
  • Check out these Videos

×
×
  • Create New...