Jump to content

A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


Recommended Posts

  • Publishers
Posted

7 min read

A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery

A unique new material that shrinks when it is heated and expands when it is cooled could help enable the ultra-stable space telescopes that future NASA missions require to search for habitable worlds.

An artist depiction of a watery exoplanet in space. Two stars in close proximity are shown near the planet with many stars and a nebula in the dark background.
Advancements in material technologies are needed to meet the science needs of the next great observatories. These observatories will strive to find, identify, and study exoplanets and their ability to support life.
Credit: NASA JPL

One of the goals of NASA’s Astrophysics Division is to determine whether we are alone in the universe. NASA’s astrophysics missions seek to answer this question by identifying planets beyond our solar system (exoplanets) that could support life. Over the last two decades, scientists have developed ways to detect atmospheres on exoplanets by closely observing stars through advanced telescopes. As light passes through a planet’s atmosphere or is reflected or emitted from a planet’s surface, telescopes can measure the intensity and spectra (i.e., “color”) of the light, and can detect various shifts in the light caused by gases in the planetary atmosphere. By analyzing these patterns, scientists can determine the types of gasses in the exoplanet’s atmosphere.

Decoding these shifts is no easy task because the exoplanets appear very near their host stars when we observe them, and the starlight is one billion times brighter than the light from an Earth-size exoplanet. To successfully detect habitable exoplanets, NASA’s future Habitable Worlds Observatory will need a contrast ratio of one to one billion (1:1,000,000,000).

Achieving this extreme contrast ratio will require a telescope that is 1,000 times more stable than state-of-the-art space-based observatories like NASA’s James Webb Space Telescope and its forthcoming Nancy Grace Roman Space Telescope. New sensors, system architectures, and materials must be integrated and work in concert for future mission success. A team from the company ALLVAR is collaborating with NASA’s Marshall Space Flight Center and NASA’s Jet Propulsion Laboratory to demonstrate how integration of a new material with unique negative thermal expansion characteristics can help enable ultra-stable telescope structures.

Material stability has always been a limiting factor for observing celestial phenomena. For decades, scientists and engineers have been working to overcome challenges such as micro-creep, thermal expansion, and moisture expansion that detrimentally affect telescope stability. The materials currently used for telescope mirrors and struts have drastically improved the dimensional stability of the great observatories like Webb and Roman, but as indicated in the Decadal Survey on Astronomy and Astrophysics 2020 developed by the National Academies of Sciences, Engineering, and Medicine, they still fall short of the 10 picometer level stability over several hours that will be required for the Habitable Worlds Observatory. For perspective, 10 picometers is roughly 1/10th the diameter of an atom.

A large complex structure in a work room towers above workers clad in protective suits. At the top of the structure, six black struts extend to hold a small round mirror.

NASA’s Nancy Grace Roman Space Telescope sits atop the support structure and instrument payloads. The long black struts holding the telescope’s secondary mirror will contribute roughly 30% of the wave front error while the larger support structure underneath the primary mirror will contribute another 30%.

Credit: NASA/Chris Gunn

Funding from NASA and other sources has enabled this material to transition from the laboratory to the commercial scale. ALLVAR received NASA Small Business Innovative Research (SBIR) funding to scale and integrate a new alloy material into telescope structure demonstrations for potential use on future NASA missions like the Habitable Worlds Observatory. This alloy shrinks when heated and expands when cooled—a property known as negative thermal expansion (NTE). For example, ALLVAR Alloy 30 exhibits a -30 ppm/°C coefficient of thermal expansion (CTE) at room temperature. This means that a 1-meter long piece of this NTE alloy will shrink 0.003 mm for every 1 °C increase in temperature. For comparison, aluminum expands at +23 ppm/°C.

A plot with a y-axis of thermal strain (-0.4% to 0.4%) versus temperature on the x-axis with a range of-150°C to 100°C is given. Invar 36, Ti64, A286, and Aluminum 6061 strain values are shown with negative value at lower temperatures indicating they contract when cooled and positive thermal strain above 25°C showing expansion when heated. The plot for ALLVAR Alloy 30 shows the opposite phenomenon with a thermal contraction occurring when heated and thermal expansion occurring when cooled.

While other materials expand while heated and contract when cooled, ALLVAR Alloy 30 exhibits a negative thermal expansion, which can compensate for the thermal expansion mismatch of other materials. The thermal strain versus temperature is shown for 6061 Aluminum, A286 Stainless Steel, Titanium 6Al-4V, Invar 36, and ALLVAR Alloy 30.

Because it shrinks when other materials expand, ALLVAR Alloy 30 can be used to strategically compensate for the expansion and contraction of other materials. The alloy’s unique NTE property and lack of moisture expansion could enable optic designers to address the stability needs of future telescope structures. Calculations have indicated that integrating ALLVAR Alloy 30 into certain telescope designs could improve thermal stability up to 200 times compared to only using traditional materials like aluminum, titanium, Carbon Fiber Reinforced Polymers (CFRPs), and the nickel–iron alloy, Invar.

Two struts with an arrow indicating where on a hexapod assembly they would fit. A graph depicting decreasing ultrastability shows frequency on the x axis in Hz and Length ASD in m/√Hz on the y axis. The length noise of the ALLVAR strut is indicated in red with the strut stability well below the proposed target for the success criteria for the project.
The hexapod assembly with six ALLVAR Alloy struts was measured for long-term stability. The stability of the individual struts and the hexapod assembly were measured using interferometry at the University of Florida’s Institute for High Energy Physics and Astrophysics. The struts were found to have a length noise well below the proposed target for the success criteria for the project.
Credit: (left) ALLVAR and (right) Simon F. Barke, Ph.D.

To demonstrate that negative thermal expansion alloys can enable ultra-stable structures, the ALLVAR team developed a hexapod structure to separate two mirrors made of a commercially available glass ceramic material with ultra-low thermal expansion properties. Invar was bonded to the mirrors and flexures made of Ti6Al4V—a titanium alloy commonly used in aerospace applications—were attached to the Invar. To compensate for the positive CTEs of the Invar and Ti6Al4V components, an NTE ALLVAR Alloy 30 tube was used between the Ti6Al4V flexures to create the struts separating the two mirrors. The natural positive thermal expansion of the Invar and Ti6Al4V components is offset by the negative thermal expansion of the NTE alloy struts, resulting in a structure with an effective zero thermal expansion.

The stability of the structure was evaluated at the University of Florida Institute for High Energy Physics and Astrophysics. The hexapod structure exhibited stability well below the 100 pm/√Hz target and achieved 11 pm/√Hz. This first iteration is close to the 10 pm stability required for the future Habitable Worlds Observatory. A paper and presentation made at the August 2021 Society of Photo-Optical Instrumentation Engineers conference provides details about this analysis.

Furthermore, a series of tests run by NASA Marshall showed that the ultra-stable struts were able to achieve a near-zero thermal expansion that matched the mirrors in the above analysis. This result translates into less than a 5 nm root mean square (rms) change in the mirror’s shape across a 28K temperature change.

On the left, a circle with red, yellow, blue, and green colors that represent localized Root Mean Square (RMS) changes in the mirror’s surface shape with changing temperature. Three roughly circular red areas are caused by the thermal expansion mismatch of the Invar bonding pads with the ZERODUR mirror, while blue and green fields are shown in the rest of the circle. indicating little to no changes caused by thermal expansion of the support structure. The image on the right depicts a very reflective mirror held vertically with wires connected to the sides of the mirror. A second mirror is connected behind it with a structure in between.
The ALLVAR enabled Ultra-Stable Hexapod Assembly undergoing Interferometric Testing between 293K and 265K (right). On the left, the Root Mean Square (RMS) changes in the mirror’s surface shape are visually represented. The three roughly circular red areas are caused by the thermal expansion mismatch of the invar bonding pads with the ZERODUR mirror, while the blue and green sections show little to no changes caused by thermal expansion. The surface diagram shows a less than 5 nanometer RMS change in mirror figure.
Credit: NASA’s X-Ray and Cryogenic Facility [XRCF]

Beyond ultra-stable structures, the NTE alloy technology has enabled enhanced passive thermal switch performance and has been used to remove the detrimental effects of temperature changes on bolted joints and infrared optics. These applications could impact technologies used in other NASA missions. For example, these new alloys have been integrated into the cryogenic sub-assembly of Roman’s coronagraph technology demonstration. The addition of NTE washers enabled the use of pyrolytic graphite thermal straps for more efficient heat transfer. ALLVAR Alloy 30 is also being used in a high-performance passive thermal switch incorporated into the UC Berkeley Space Science Laboratory’s Lunar Surface Electromagnetics Experiment-Night (LuSEE Night) project aboard Firefly Aerospace’s Blue Ghost Mission 2, which will be delivered to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative. The NTE alloys enabled smaller thermal switch size and greater on-off heat conduction ratios for LuSEE Night.

Through another recent NASA SBIR effort, the ALLVAR team worked with NASA’s Jet Propulsion Laboratory to develop detailed datasets of ALLVAR Alloy 30 material properties. These large datasets include statistically significant material properties such as strength, elastic modulus, fatigue, and thermal conductivity. The team also collected information about less common properties like micro-creep and micro-yield. With these properties characterized, ALLVAR Alloy 30 has cleared a major hurdle towards space-material qualification.

As a spinoff of this NASA-funded work, the team is developing a new alloy with tunable thermal expansion properties that can match other materials or even achieve zero CTE. Thermal expansion mismatch causes dimensional stability and force-load issues that can impact fields such as nuclear engineering, quantum computing, aerospace and defense, optics, fundamental physics, and medical imaging. The potential uses for this new material will likely extend far beyond astronomy. For example, ALLVAR developed washers and spacers, are now commercially available to maintain consistent preloads across extreme temperature ranges in both space and terrestrial environments. These washers and spacers excel at counteracting the thermal expansion and contraction of other materials, ensuring stability for demanding applications.

For additional details, see the entry for this project on NASA TechPort.

Project Lead: Dr. James A. Monroe, ALLVAR

The following NASA organizations sponsored this effort: NASA Astrophysics Division, NASA SBIR Program funded by the Space Technology Mission Directorate (STMD).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Air Force Chaplain Corps wrapped up its annual summit, bringing together Religious Support Teams from across the Total Force to focus on spiritual readiness and alignment under the Chaplain Corps’ new motto: HC Ready!

      View the full article
    • By NASA
      A member of the space crop production team prepares materials for Veggie seed pillows inside the Space Systems Processing Facility at NASA’s Kennedy Space Center. NASA/Cory S Huston When the Crew-11 astronauts launched to the International Space Station on August 1, 2025, they carried with them another chapter in space farming: the latest VEG-03 experiments, complete with seed pillows ready for planting.
      Growing plants provides nutrition for astronauts, as well as psychological benefits that help maintain crew morale during missions.
      During VEG-03 MNO, astronauts will be able to choose what they want to grow from a seed library including Wasabi mustard greens, Red Russian Kale, and Dragoon lettuce.
      From Seed to Space Salad
      The experiment takes place inside Veggie, a chamber about the size of carry-on luggage. The system uses red, blue, and green LED lights to provide the right spectrum for plant growth. Clear flexible bellows — accordion-like walls that expand to accommodate maturing plants — create a semi-controlled environment around the growing area.
      Astronauts plant thin strips containing their selected seeds into fabric “seed pillows” filled with a special clay-based growing medium and controlled-release fertilizer. The clay, similar to what’s used on baseball fields, helps distribute water and air around the roots in the microgravity environment. 
      Crew members will monitor the plants, add water as needed, and document growth through regular photographs. At harvest time, astronauts will eat some of the fresh produce while freezing other samples for return to Earth, where scientists will analyze their nutritional content and safety.
      How this benefits space exploration
      Fresh food will become critical as astronauts venture farther from Earth on missions to the Moon and Mars. NASA aims to validate different kinds of crops to add variety to astronaut diets during long-duration space exploration missions, while giving crew members more control over what they grow and eat.
      How this benefits humanity
      The techniques developed for growing crops in space’s challenging conditions may also improve agricultural practices on Earth. Indoor crop cultivation approaches similar to what astronauts do in Veggie might also be adapted for horticultural therapy programs, giving elderly or disabled individuals new ways to experience gardening when traditional methods aren’t accessible.
      Related Resources
      VEG-03 MNO on the Space Station Research Explorer
      Veggie Vegetable Product System
      Veggie Plant Growth System Activated on International Space Station
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      While it may sound like the opening to a punchline, this scientific question was at the heart of a research experiment that orbited the Moon aboard Artemis I.NASA astronaut and Expedition 65 Flight Engineer Mark Vande Hei caring for chili peppers aboard the International Space Station. NASA New research uncovers the connection between space agriculture and astronaut health. A study published in npj Microgravity shows how analyzing diverse datasets together can reveal insights that might otherwise be missed — in this case, linking space-grown food quality to astronaut nutrition and gut health.
      The paper reviewed previous studies of plants grown aboard the International Space Station. The authors found that some edible plants grown in low Earth orbit have lower concentrations of essential nutrients, like calcium and magnesium, than those grown on Earth.
      The reduced levels of these nutrients could make crops not as effective in mitigating the bone loss and reduced immune function that astronauts encounter in space.
      Working Groups Uncover Hidden Health Connections
      Three Analysis Working Groups from NASA’s Open Science Data Repository collaborated to make this paper possible. These discipline-specific groups typically work independently, but this project sparked conversations among researchers with different specialties.
      Researchers combined plant data, crop nutrition profiles, gut studies, and astronaut blood biomarkers — a data integration effort of the Biological and Physical Sciences Division open science model. The work also draws on data from JAXA (Japan Aerospace Exploration Agency).
      For NASA, these findings offer new insights into how to feed and support astronauts in space, particularly on long-duration missions to the Moon and Mars.
      Seeks Ways to Improve Space Diets
      The study also examined increased intestinal permeability — often called “leaky gut” — a condition that can result from poor nutrition and may be exacerbated by the space environment. Intestinal permeability may interfere with how astronauts absorb nutrients and regulate immune responses.
      If properly engineered, space-grown crops could offer a solution to these health challenges. The team outlined several potential strategies, including bioengineering plants with higher nutrient content, incorporating more antioxidant-rich species, and designing personalized nutrition plans using astronauts’ genetic information.
      The study suggests targeting specific biological pathways, such as using compounds like quercetin, an antioxidant found in certain crops, to address bone health challenges at the molecular level. The approach emphasizes designing nutrition plans based on individual astronaut physiology, including how well their digestive systems can absorb nutrients.
      Related Resources

      Open Science Data Repository
      Open Science Data Repository Analysis Working Groups (AWG)
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Webb Narrows Atmospheric Possibilities for Earth-sized Exoplanet TRAPPIST-1 d
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. Full illustration and caption show below. Credits:
      NASA, ESA, CSA, Joseph Olmsted (STScI) The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from NASA’s James Webb Space Telescope, it does not have an Earth-like atmosphere.
      “Ultimately, we want to know if something like the environment we enjoy on Earth can exist elsewhere, and under what conditions. While NASA’s James Webb Space Telescope is giving us the ability to explore this question in Earth-sized planets for the first time, at this point we can rule out TRAPPIST-1 d from a list of potential Earth twins or cousins,” said Caroline Piaulet-Ghorayeb of the University of Chicago and Trottier Institute for Research on Exoplanets (IREx) at Université de Montréal, lead author of the study published in The Astrophysical Journal.
      Planet TRAPPIST-1 d
      The TRAPPIST-1 system is located 40 light-years away and was revealed as the record-holder for most Earth-sized rocky planets around a single star in 2017, thanks to data from NASA’s retired Spitzer Space Telescope and other observatories. Due to that star being a dim, relatively cold red dwarf, the “habitable zone” or “Goldilocks zone” – where the planet’s temperature may be just right, such that liquid surface water is possible – lies much closer to the star than in our solar system. TRAPPIST-1 d, the third planet from the red dwarf star, lies on the cusp of that temperate zone, yet its distance to its star is only 2 percent of Earth’s distance from the Sun. TRAPPIST-1 d completes an entire orbit around its star, its year, in only four Earth days.
      Webb’s NIRSpec (Near-Infrared Spectrograph) instrument did not detect molecules from TRAPPIST-1 d that are common in Earth’s atmosphere, like water, methane, or carbon dioxide. However, Piaulet-Ghorayeb outlined several possibilities for the exoplanet that remain open for follow-up study.
      “There are a few potential reasons why we don’t detect an atmosphere around TRAPPIST-1 d. It could have an extremely thin atmosphere that is difficult to detect, somewhat like Mars. Alternatively, it could have very thick, high-altitude clouds that are blocking our detection of specific atmospheric signatures — something more like Venus. Or, it could be a barren rock, with no atmosphere at all,” Piaulet-Ghorayeb said.
      Image: TRAPPIST-1 d (Artist’s Concept)
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. The TRAPPIST-1 system is intriguing to scientists for a few reasons. Not only does the system have seven Earth-sized rocky worlds, but its star is a red dwarf, the most common type of star in the Milky Way galaxy. If an Earth-sized world can maintain an atmosphere here, and thus have the potential for liquid surface water, the chance of finding similar worlds throughout the galaxy is much higher. In studying the TRAPPIST-1 planets, scientists are determining the best methods for separating starlight from potential atmospheric signatures in data from NASA’s James Webb Space Telescope. The star TRAPPIST-1’s variability, with frequent flares, provides a challenging testing ground for these methods. NASA, ESA, CSA, Joseph Olmsted (STScI) The Star TRAPPIST-1
      No matter what the case may be for TRAPPIST-1 d, it’s tough being a planet in orbit around a red dwarf star. TRAPPIST-1, the host star of the system, is known to be volatile, often releasing flares of high-energy radiation with the potential to strip off the atmospheres of its small planets, especially those orbiting most closely. Nevertheless, scientists are motivated to seek signs of atmospheres on the TRAPPIST-1 planets because red dwarf stars are the most common stars in our galaxy. If planets can hold on to an atmosphere here, under waves of harsh stellar radiation, they could, as the saying goes, make it anywhere.
      “Webb’s sensitive infrared instruments are allowing us to delve into the atmospheres of these smaller, colder planets for the first time,” said Björn Benneke of IREx at Université de Montréal, a co-author of the study. “We’re really just getting started using Webb to look for atmospheres on Earth-sized planets, and to define the line between planets that can hold onto an atmosphere, and those that cannot.”
      The Outer TRAPPIST-1 Planets
      Webb observations of the outer TRAPPIST-1 planets are ongoing, which hold both potential and peril. On the one hand, Benneke said, planets e, f, g, and h may have better chances of having atmospheres because they are further away from the energetic eruptions of their host star. However, their distance and colder environment will make atmospheric signatures more difficult to detect, even with Webb’s infrared instruments.
      “All hope is not lost for atmospheres around the TRAPPIST-1 planets,” Piaulet-Ghorayeb said. “While we didn’t find a big, bold atmospheric signature at planet d, there is still potential for the outer planets to be holding onto a lot of water and other atmospheric components.”
      “As NASA leads the way in searching for life outside our solar system, one of the most important avenues we can pursue is understanding which planets retain their atmospheres, and why,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “NASA’s James Webb Space Telescope has pushed our capabilities for studying exoplanet atmospheres further than ever before, beyond extreme worlds to some rocky planets – allowing us to begin confirming theories about the kind of planets that may be potentially habitable. This important groundwork will position our next missions, like NASA’s Habitable Worlds Observatory, to answer a universal question: Are we alone?”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about the TRAPPIST-1 system
      Read more about changing views on the “habitable zone”
      Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
      Video: How to Study Exoplanets
      Video: How do we learn about a planet’s Atmosphere?
      Learn more about exoplanets
      Read more about studying TRAPPIST-1 c with Webb
      Read more about studying TRAPPIST-1 b with Webb
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Aug 13, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Red Dwarfs Science & Research Stars Studying Exoplanets The Universe View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have found strong evidence of a giant planet orbiting a star in the stellar system closest to our own Sun. At just 4 light-years away from Earth, the Alpha Centauri triple star system has long been a compelling target in the search for worlds beyond our solar system.
      View the full article
  • Check out these Videos

×
×
  • Create New...