Jump to content

Recommended Posts

  • Publishers
Posted
netflix.jpg?w=2048
Artist’s concept.
Credit: NASA

NASA announced Monday its latest plans to team up with a streaming service to bring space a little closer to home. Starting this summer, NASA+ live programming will be available on Netflix.

Audiences now will have another option to stream rocket launches, astronaut spacewalks, mission coverage, and breathtaking live views of Earth from the International Space Station.

“The National Aeronautics and Space Act of 1958 calls on us to share our story of space exploration with the broadest possible audience,” said Rebecca Sirmons, general manager of NASA+ at the agency’s headquarters in Washington. “Together, we’re committed to a Golden Age of Innovation and Exploration – inspiring new generations – right from the comfort of their couch or in the palm of their hand from their phone.”

Through this partnership, NASA’s work in science and exploration will become even more accessible, allowing the agency to increase engagement with and inspire a global audience in a modern media landscape, where Netflix reaches a global audience of more than 700 million people.

The agency’s broader efforts include connecting with as many people as possible through video, audio, social media, and live events. The goal is simple: to bring the excitement of the agency’s discoveries, inventions, and space exploration to people, wherever they are.

NASA+ remains available for free, with no ads, through the NASA app and on the agency’s website.

Additional programming details and schedules will be announced ahead of launch.

For more about NASA’s missions, visit:

https://www.nasa.gov

-end-

Cheryl Warner
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov

Share

Details

Last Updated
Jun 30, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)


      Human-rating is a critical certification process that validates the safety, reliability, and suitability of space systems—including orbiters, launch vehicles, rovers, spacesuits, habitats, and other crewed elements—for human use and interaction. This process ensures that systems are designed not only to protect human life but also to accommodate human needs and effectively integrate human capabilities. Human-rating requires that systems can tolerate failures, provide life-sustaining environments, and offer the crew sufficient control and situational awareness. NASA’s standards, such as a maximum allowable probability of loss of crew of 1 in 500 for ascent or descent, reflect the agency’s commitment to minimizing risk in human spaceflight.
      Over the decades, the concept of human-rating has evolved significantly. Early efforts focused primarily on basic crew survival and redundancy in critical systems. However, as missions became more complex and extended in duration, the scope of human-rating expanded to include human performance, health management, and the psychological and physiological demands of space travel. Today, human-rating is a multidisciplinary effort that integrates engineering, medical, and operational expertise to ensure that systems are not only survivable but also support optimal human function in extreme environments.
      Modern human-rating standards—such as NASA Procedural Requirements (NPR) 8705.2C, NASA-STD-8719.29 (Technical Requirements for Human-Rating), and NASA-STD-3001 (Human System Standards)—form the foundation of NASA’s approach. These documents emphasize risk-informed design, fault tolerance, human factors engineering, and the ability to recover from hazardous situations. They also provide detailed guidance on system safety, crew control interfaces, abort capabilities, and environmental health requirements. Together, they ensure that human spaceflight systems are designed to accommodate, utilize, and protect the crew throughout all mission phases.
      The human-rating certification process is rigorous and iterative. It involves extensive testing, validation, and verification of system performance, including simulations, flight tests, and integrated safety analyses. Certification also requires continuous monitoring, configuration control, and maintenance to ensure that systems remain in their certified state throughout their operational life. Importantly, human-rating is not just a checklist of technical requirements—it represents a cultural commitment to crew safety. It fosters a mindset in which every team member, from design engineers to mission operators, shares responsibility for protecting human life.
      To support program and project teams in applying these standards, NASA has conducted cross-reviews of documents like NASA-STD-3001 in relation to NASA-STD-8719.29. These assessments help identify relevant human health and performance requirements that should be considered during system design and development. While not a substitute for detailed applicability assessments, such reviews provide valuable guidance for integrating human-rating principles into mission planning and vehicle architecture.
      NASA/Sydney Bergen-Hill Read More About Human Rating Share
      Details
      Last Updated Aug 15, 2025 Related Terms
      General Artemis Commercial Space Humans in Space International Space Station (ISS) Office of the Chief Health and Medical Officer (OCHMO) Spacesuits Keep Exploring Discover Related Topics
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Technical Briefs
      Technical Briefs are available for standards that offer technical data, background, and application notes for vehicle developers and medical professionals.…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Human Integration Design Handbook
      A companion document to NASA-STD-3001 Volume 2 is the Human Integration Design Handbook (HIDH). The HIDH is a compendium of…
      View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission pose for a photo during a training session.Credit: SpaceX NASA astronauts Michael Finke and Zena Cardman will connect with students in Minnesota as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 11 a.m. EDT on Wednesday, Aug. 20, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m., Tuesday, Aug. 19, to Elizabeth Ross at: 952-838-1340 or elizabeth.ross@pacer.org.
      The PACER center will host this event in Bloomington for students in their Tech for Teens program. The organization aims to improve educational opportunities and enhance the quality of life for children and young adults with disabilities and their families. The goal of this event is to help educate and inspire teens with disabilities to consider opportunities in STEM fields.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See more information on NASA in-flight downlinks at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-511
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 15, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Artemis ISS Research STEM Engagement at NASA View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
      Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
      The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.” 
      This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard. 
      “NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.” 
      Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
      The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
      The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.    
      To learn more about HERC, visit: 
      https://www.nasa.gov/roverchallenge/
      Share
      Details
      Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By NASA
      3 min read
      Summer Triangle Corner: Altair
      A map of the asterism known as the Summer Triangle. This asterism is made up of three stars: Vega in the Lyra constellation, Altair in the Aquila constellation, and Deneb in the Cygnus constellation. Stellarium Web Altair is the last stop on our trip around the Summer Triangle! The last star in the asterism to rise for Northern Hemisphere observers before summer begins, brilliant Altair is high overhead at sunset at the end of the season in September. Altair might be the most unusual of the three stars of the Triangle, due to its great speed: this star spins so rapidly that it appears “squished.”
      Altair is the brightest star in the constellation of Aquila, the Eagle. A very bright star, Altair holds a notable place in the mythologies of cultures around the world. As discussed in a previous article, Altair represents the cowherd in the ancient tale “Cowherd and the Weaver Girl.” While described as part of an eagle by ancient peoples around the Mediterranean, it was also seen as part of an eagle by the Koori people in Australia. They saw the star itself as representing a wedge-tailed eagle, and two nearby stars as his wives, a pair of black swans. More recently, one of the first home computers was named after the star: the Altair 8800.
      A rapidly spinning star darkens and exhibits a bulge at the equator, as shown by the model at left. At right, an actual CHARA interferometer image of the star Altair. NASA/NSF/Center for High Angular Resolution Astronomy/Zina Deretsky Altair’s rapid spinning was first detected in the 1960s. The close observations that followed tested the limits of technology available to astronomers, eventually resulting in direct images of the star’s shape and surface by using a technique called interferometry, which combines the light from two or more instruments to produce a single image. Predictions about how the surface of a rapidly spinning massive star would appear held true to the observations; models predicted a squashed, almost “pumpkin-like” shape instead of a round sphere, along with a dimming effect along the widened equator, and the observations confirmed this!
      This equatorial dimming is due to a phenomenon called gravity darkening. Altair is wider at the equator than it is at the poles due to centrifugal force, resulting in the star’s mass bulging outwards at the equator. This results in the denser poles of the star being hotter and brighter, and the less dense equator being cooler and therefore dimmer. This doesn’t mean that the equator of Altair or other rapidly spinning stars are actually dark, but rather that the equator is dark in comparison to the poles; this is similar in a sense to sunspots. If you were to observe a sunspot on its own, it would appear blindingly bright, but it is cooler than the surrounding plasma in the Sun and so appears dark in contrast.
      As summer winds down, you can still take a Trip Around the Summer Triangle with this activity from the Night Sky Network. Mark some of the sights in and around the Summer Triangle at: bit.ly/TriangleTrip.
      Originally posted by Dave Prosper: August 2020
      Last Updated by Kat Troche: July 2025
      View the full article
  • Check out these Videos

×
×
  • Create New...