Members Can Post Anonymously On This Site
Going the Distance: Lisa Pace Leads Exploration Development Integration at Johnson
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.”
This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard.
“NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.”
Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics.
Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.
To learn more about HERC, visit:
https://www.nasa.gov/roverchallenge/
Share
Details
Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
Article 4 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
The Space RCO hosted an Agile Satellite Industry Engagement Day, bringing together 13 prospective industry partners for technical discussions aimed at advancing next-generation satellite design and procurement.
View the full article
-
By Space Force
The Space RCO hosted an Agile Satellite Industry Engagement Day, bringing together 13 prospective industry partners for technical discussions aimed at advancing next-generation satellite design and procurement.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA has released a new proposal opportunity for industry to tap into agency know-how, resources, and expertise. The Announcement of Collaboration Opportunity (ACO), managed by the Space Technology Mission Directorate, enables valuable collaboration without financial exchanges between NASA and industry partners. Instead, companies leverage NASA subject matter experts, facilities, software, and hardware to accelerate their technologies and prepare them for future commercial and government use.
On Wednesday, NASA issued a standing ACO announcement for partnership proposals which will be available for five years and will serve as the umbrella opportunity for topic-specific appendix releases. NASA intends to issue appendices every six to 12 months to address evolving space technology needs. The 2025 ACO appendix is open for proposals until Sept. 24.
NASA will host an informational webinar about the opportunity and appendix at 2 p.m. EDT on Wednesday, Aug. 6. Interested proposers are encouraged to submit questions which will be answered during the webinar and will be available online after the webinar.
NASA teaming with industry isn’t new – decades of partnerships have resulted in ambitious missions that benefit all of humanity. But in recent years, NASA has also played a key role as a technology enabler, providing one-of-a-kind tools, resources, and infrastructure to help commercial aerospace companies achieve their goals.
Since 2015, NASA has collaborated with industry on approximately 80 ACO projects. Here are some ways the collaborations have advanced space technology:
Lunar lander systems
Blue Origin and NASA worked together on several ACOs to mature the company’s lunar lander design. NASA provided technical reports and assessments and conducted tests at multiple centers to help Blue Origin advance a stacked fuel cell system for a lander’s primary power source. Other Blue Origin ACO projects evaluated high-temperature engine materials and advanced a landing navigation and guidance system.
Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration.
Artist concept of Blue Origin’s Blue Moon Mark 1 (MK1) lander.Blue Origin Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration.
Cryogenic fluid transfer
Throughout a year-long ACO, NASA and SpaceX engineers worked together to perform in-depth computational fluid analysis of proposed propellant transfer methods between two SpaceX Starship spacecraft in low-Earth orbit. The SpaceX-specific analysis utilized Starship flight data and data from previous NASA research and development to identify potential risks and help mitigate them during the early stages of commercial development. NASA also provided inputs as SpaceX developed an initial concept of operations for its orbital propellant transfer missions.
Artist’s concept of Starship propellant transfer in space.SpaceX SpaceX used the ACO analyses to inform the design of its Starship Human Landing System, which NASA selected in 2021 to put the first Artemis astronauts on the Moon.
Autonomous spacecraft navigation solution
Advanced Space and NASA partnered to advance the company’s Cislunar Autonomous Positioning System – software that allows lunar spacecraft to determine their location without relying exclusively on tracking from Earth.
Dylan Schmidt, CAPSTONE assembly integration and test lead, installs solar panels onto the CAPSTONE spacecraft at Tyvak Nano-Satellite Systems, Inc., in Irvine, California.NASA/Dominic Hart The CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) spacecraft launched to the Moon in 2022 and continues to operate and collect critical data to refine the software. Under the ACO, Advanced Space was able to use NASA’s Lunar Reconnaissance Orbiter to conduct crosslink experiments with CAPSTONE, helping mature the navigation solution for future missions. The mission’s Cislunar Autonomous Positioning System technology was initially supported through the NASA Small Business Innovation Research program.
Multi-purpose laser sensing system
Sensuron and NASA matured a miniature, rugged fiber optic sensing system capable of taking thermal and shape measurements for multiple applications. Throughout the ACO, Sensuron benefitted from NASA’s expertise in fiber optics and electrical, mechanical, and system testing engineering to design, fabricate, and “shake and bake” its prototype laser.
NASA’s Armstrong Flight Research Center’s FOSS, Fiber Optic Sensing System, recently supported tests of a system designed to turn oxygen into liquid oxygen, a component of rocket fuel. Patrick Chan, electronics engineer, and NASA Armstrong’s FOSS portfolio project manager, shows fiber like that used in the testing.NASA/Genaro Vavuris Space missions could use the technology to monitor cryogenic propellant levels and determine a fuel tank’s structural integrity throughout an extended mission. The laser technology also has medical applications on Earth, which ultimately resulted in the Sensuron spinoff company, The Shape Sensing Company.
Flexible lunar tires
In 2023, Venturi Astrolab began work with NASA under an ACO to test its flexible lunar tire design. The company tapped into testing capabilities unique to NASA, including heat transfer to cold lunar soil, traction, and life testing. The data validated the performance of tire prototypes, helping ready the design to support future NASA missions.
In 2024, NASA selected three companies, including Venturi Astrolab, to advance capabilities for a lunar terrain vehicle that astronauts could use to travel around the lunar surface, conducting scientific research on the Moon and preparing for human missions to Mars.
Venturi Lab designed and developed a durable, robust, and hyper-deformable lunar wheel.Venturi Lab The Announcement of Collaboration Opportunity (ACO) is one of many ways NASA enables commercial industry to develop, build, own, and eventually operate space systems. To learn more about these technology projects and more, visit: https://techport.nasa.gov/.
Facebook logo @NASATechnology @NASA_Technology Explore More
2 min read NASA Seeks Industry Concepts on Moon, Mars Communications
Article 1 week ago 1 min read USBR Seal Team Fix Challenge
Article 1 week ago 4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
Article 1 week ago Share
Details
Last Updated Jul 30, 2025 EditorLoura Hall Related Terms
Space Technology Mission Directorate Communicating and Navigating with Missions Small Spacecraft Technology Program Space Communications Technology Technology Technology Transfer & Spinoffs View the full article
-
By NASA
As part of her Summer Reading Challenge, Second Lady Usha Vance will host an event for children in grades K-8 on Monday, Aug. 4, at NASA’s Johnson Space Center in Houston.Credit: White House As part of her Summer Reading Challenge, Second Lady Usha Vance will host an event for children in grades K-8 on Monday, Aug. 4, at NASA’s Johnson Space Center in Houston. Media are invited.
NASA astronaut Suni Williams will join Ms. Vance to read a space-related book to children and participate in other space-related activities.
Live coverage of the reading will stream about 2:45 p.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
U.S. media interested in participating in this event must RSVP to NASA Press Secretary Bethany Stevens at: bethany.c.stevens@nasa.gov, as well as Office of the Second Lady Communications Director Nicole Reeves at: nicole.e.reeves@ovp.eop.gov. Requests must be made no later than 1 p.m. EDT on Thursday, July 31. Confirmed media will receive additional details from NASA. The agency’s media accreditation policy is online.
Through her reading challenge, the Second Lady is encouraging youth to seek adventure, imagination, and discovery between the pages of a book. Students interested in participating in the challenge must read 12 books by Friday, Sept. 5. Additional details, including where to download a reading log, and how to submit it to the White House, are available online.
As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Golden Age explorers, and ensuring the United States continues to lead in space exploration and discovery.
Learn more about NASA missions online at:
https://www.nasa.gov
-end-
Bethany Stevens / Cheryl Warner
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov / cheryl.m.warner@nasa.gov
Share
Details
Last Updated Jul 28, 2025 LocationNASA Headquarters Related Terms
NASA Headquarters Johnson Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.