Jump to content

NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist's concept of NASA’s Mars Reconnaissance Orbiter
An antenna sticks out like whiskers from NASA’s Mars Reconnaissance Orbiter in this artist’s concept of the spacecraft, which has been orbiting the Red Planet since 2006. This antenna is part of SHARAD, a radar that peers below the Martian surface.
NASA/JPL-Caltech

The Mars Reconnaissance Orbiter is testing a series of large spacecraft rolls that will help it hunt for water.

After nearly 20 years of operations, NASA’s Mars Reconnaissance Orbiter (MRO) is on a roll, performing a new maneuver to squeeze even more science out of the busy spacecraft as it circles the Red Planet. Engineers have essentially taught the probe to roll over so that it’s nearly upside down. Doing so enables MRO to look deeper underground as it searches for liquid and frozen water, among other things.

The new capability is detailed in a paper recently published in the Planetary Science Journal documenting three “very large rolls,” as the mission calls them, that were performed between 2023 and 2024.

“Not only can you teach an old spacecraft new tricks, you can open up entirely new regions of the subsurface to explore by doing so,” said one of the paper’s authors, Gareth Morgan of the Planetary Science Institute in Tucson, Arizona.

This animation depicts NASA’s Mars Reconnaissance Orbiter performing a 120-degree roll that increases the strength of its radar signal by 10 times or more.
NASA/JPL-Caltech

The orbiter was originally designed to roll up to 30 degrees in any direction so that it can point its instruments at surface targets, including potential landing sites, impact craters, and more.

“We’re unique in that the entire spacecraft and its software are designed to let us roll all the time,” said Reid Thomas, MRO’s project manager at NASA’s Jet Propulsion Laboratory in Southern California.

The process for rolling isn’t simple. The spacecraft carries five operating science instruments that have different pointing requirements. To target a precise spot on the surface with one instrument, the orbiter has to roll a particular way, which means the other instruments may have a less-favorable view of Mars during the maneuver.

That’s why each regular roll is planned weeks in advance, with instrument teams negotiating who conducts science and when. Then, an algorithm checks MRO’s position above Mars and automatically commands the orbiter to roll so the appropriate instrument points at the correct spot on the surface. At the same time, the algorithm commands the spacecraft’s solar arrays to rotate and track the Sun and its high-gain antenna to track Earth to maintain power and communications.

Very large rolls, which are 120 degrees, require even more planning to maintain the safety of the spacecraft. The payoff is that the new maneuver enables one particular instrument, called the Shallow Radar (SHARAD), to have a deeper view of Mars than ever before.

e2a-pia26555-sharad-data-120-web.jpg e2b-pia26555-fig-a-sharad-data-28-web.jp
radargrams from the SHARAD instrument on NASA’s MRO
radargrams from the SHARAD instrument on NASA’s MRO
radargrams from the SHARAD instrument on NASA’s MRO
radargrams from the SHARAD instrument on NASA’s MRO

SHARAD’s View of Mars During a ‘Very Large Roll’

These two radargrams from the SHARAD instrument on NASA’s MRO reveal how the spacecraft’s new “very large roll” maneuver produces a stronger signal, providing a brighter, clearer picture of the Martian subsurface. Use the slider to compare the 120-degree roll, left, to the standard 28-degree roll. NASA/JPL-Caltech/University of Rome/ASI/PSI

Bigger Rolls, Better Science

Designed to peer from about half a mile to a little over a mile (1 to 2 kilometers) belowground, SHARAD allows scientists to distinguish between materials like rock, sand, and ice. The radar was especially useful in determining where ice could be found close enough to the surface that future astronauts might one day be able to access it. Ice will be key for producing rocket propellant for the trip home and is important for learning more about the climate, geology, and potential for life at Mars.

But as great as SHARAD is, the team knew it could be even better.

To give cameras like the High-Resolution Imaging Science Experiment (HiRISE) prime viewing at the front of MRO, SHARAD’s two antenna segments were mounted at the back of the orbiter. While this setup helps the cameras, it also means that radio signals SHARAD pings onto the surface below encounter parts of the spacecraft, interfering with the signals and resulting in images that are less clear.

“The SHARAD instrument was designed for the near-subsurface, and there are select regions of Mars that are just out of reach for us,” said Morgan, a co-investigator on the SHARAD team. “There is a lot to be gained by taking a closer look at those regions.”

In 2023, the team decided to try developing 120-degree very large rolls to provide the radio waves an unobstructed path to the surface. What they found is that the maneuver can strengthen the radar signal by 10 times or more, offering a much clearer picture of the Martian underground.

But the roll is so large that the spacecraft’s communications antenna is not pointed at Earth, and its solar arrays aren’t able to track the Sun.

“The very large rolls require a special analysis to make sure we’ll have enough power in our batteries to safely do the roll,” Thomas said.

Given the time involved, the mission limits itself to one or two very large rolls a year. But engineers hope to use them more often by streamlining the process.

Learning to Roll With It

While SHARAD scientists are benefiting from these new moves, the team working with another MRO instrument, the Mars Climate Sounder, is making the most of MRO’s standard roll capability. 

The JPL-built instrument is a radiometer that serves as one of the most detailed sources available of information on Mars’ atmosphere. Measuring subtle changes in temperature over the course of many seasons, Mars Climate Sounder reveals the inner workings of dust storms and cloud formation. Dust and wind are important to understand: They are constantly reshaping the Martian surface, with wind-borne dust blanketing solar panels and posing a health risk for future astronauts.

Mars Climate Sounder was designed to pivot on a gimbal so that it can get views of the Martian horizon and surface. It also provides views of space, which scientists use to calibrate the instrument. But in 2024, the aging gimbal became unreliable. Now Mars Climate Sounder relies on MRO’s standard rolls.

“Rolling used to restrict our science,” said Mars Climate Sounder’s interim principal investigator, Armin Kleinboehl of JPL, “but we’ve incorporated it into our routine planning, both for surface views and calibration.”

More About MRO

NASA’s Jet Propulsion Laboratory in Southern California manages MRO for the agency’s Science Mission Directorate in Washington as part of its Mars Exploration Program portfolio. The SHARAD instrument was provided by the Italian Space Agency. Its operations are led by Sapienza University of Rome, and its data is analyzed by a joint U.S.-Italian science team. The Planetary Science Institute in Tucson, Arizona, leads U.S. involvement in SHARAD. Lockheed Martin Space in Denver built MRO and supports its operations.

For more information, visit:

science.nasa.gov/mission/mars-reconnaissance-orbiter

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2025-084

Share

Details

Last Updated
Jun 26, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...