Jump to content

John Casani, Former Manager of Multiple NASA Missions, Dies


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

With Voyager 2 in the background, John Casani holds a small U.S. flag
With Voyager 2 in the background, John Casani holds a small U.S. flag that was sewn into the spacecraft’s thermal blankets before its 1977 launch. Then Voyager’s project manager, Casani was first to envision the mission’s Golden Record, which lies before him with its cover at right.
NASA/JPL-Caltech

During his work on several historic missions, Casani rose through a series of technical and management positions, making an indelible mark on the nation’s space program.  

John R. Casani, a visionary engineer who served a central role in many of NASA’s historic deep space missions, died on Thursday, June 19, 2025, at the age of 92. He was preceded in death by his wife of 39 years, Lynn Casani, in 2008 and is survived by five sons and their families.

Casani started at the Jet Propulsion Laboratory in Southern California in 1956 and went on to work as an electronics engineer on some of the nation’s earliest spacecraft after NASA’s formation in 1958. Along with leading the design teams for both the Ranger and Mariner series of spacecraft, he held senior project positions on many of the Mariner missions to Mars and Venus, and was project manager for three trailblazing space missions: Voyager, Galileo, and Cassini.

His work helped advance NASA spacecraft in areas including mechanical technology, system design and integration, software, and deep space communications. No less demanding were the management challenges of these multifaceted missions, which led to innovations still in use today.

JPL's John Casani receives the National Air & Space Museum's Lifetime Achievement Award.
JPL’s John Casani receives the National Air & Space Museum’s Lifetime Achievement Award.
Carolyn Russo/NASM, National Air and Space Museum, Smithsonian Institution

John had a major influence on the development of spacecraft that visited almost every planet in our solar system, as well as the people who helped build them,” said JPL director Dave Gallagher. “He played an essential role in America’s first attempts to reach space and then the Moon, and he was just as crucial to the Voyager spacecraft that marked humanity’s first foray into interplanetary — and later, interstellar — space. That Voyager is still exploring after nearly 50 years is a testament to John’s remarkable engineering talent and his leadership that enabled others to push the boundaries of possibility.”

Born in Philadelphia in 1932, Casani studied electrical engineering at the University of Pennsylvania. After a short stint at an Air Force research lab, he moved to California in 1956 and was hired to work at JPL, a division of Caltech, on the guidance system for the U.S. Army Ballistic Missile Agency’s Jupiter-C and Sergeant missile programs.

In 1957, the Soviet Union launched Sputnik 1, the first human-made Earth satellite, alarming America and changing the trajectory of both JPL and Casani’s career. With the 1958 launch of Explorer 1, America’s first satellite, the lab transitioned to concentrating on robotic space explorers, and Casani segued from missiles to spacecraft.

One of his jobs as payload engineer on Pioneer 3 and 4, NASA’s first missions to the Moon, was to carry each of the 20-inch-long (51-cm-long) probes in a suitcase from JPL to the launch site at Cape Canaveral, Florida, where he installed them in the rocket’s nose cone.

At the dawn of the 1960s, Casani served as spacecraft systems engineer for the agency’s first two Ranger missions to the Moon, then joined the Mariner project in 1965, earning a reputation for being meticulous. Four years later, he was Mariner project manager.

Asked to share some of his wisdom in a 2009 NASA presentation, Casani said, “The thing that makes any of this work … is toughness. Toughness because this is a tough business, and it’s a very unforgiving business. You can do 1,000 things right, but if you don’t do everything right, it’ll come back and bite you.”

Casani’s next role: project manager for NASA’s high-profile flagship mission to the outer planets and beyond — Voyager. He not only led the mission from clean room to space, he was first to envision attaching a message representing humanity to any alien civilization that might encounter humanity’s first interstellar emissaries. 

“I approached Carl Sagan,” he said in a 2007 radio interview, “and asked him if he could come up with something that would be appropriate that we could put on our spacecraft in a way of sending a message to whoever might receive it.” Sagan took up the challenge, and what resulted was the Golden Record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.

Once Voyager 1 and 2 and their Golden Records launched in 1977, JPL wasted no time in pointing their “engineer’s engineer” toward Galileo, which would become the first mission to orbit a gas giant planet. As the mission’s initial project manager, Casani led the effort from inception to assembly. Along the way, he had to navigate several congressional attempts to end the project, necessitating multiple visits to Washington. The 1986 loss of Space Shuttle Challenger, from which Galileo was to launch atop a Centaur upper-stage booster, led to mission redesign efforts before its 1989 launch.

After 11 years leading Galileo, Casani became deputy assistant laboratory director for flight projects in 1988, received a promotion just over a year later and then, from 1990 to 1991, served as project manager of Cassini, NASA’s first flagship mission to orbit Saturn.

Casani became JPL’s first chief engineer in 1994, retiring in 1999 and serving on several nationally prominent committees, including leading the investigation boards of both the Mars Climate Orbiter and the Mars Polar Lander failures, and also leading the James Webb Space Telescope Independent Comprehensive Review Panel.

In early 2003, Casani returned to JPL to serve as project manager for NASA’s Project Prometheus, which would have been the nation’s first nuclear-powered, electric-propulsion spacecraft. In 2005, he became manager of the Institutional Special Projects Office at JPL, a position he held until retiring again in 2012.

“Throughout his career, John reflected the true spirit of JPL: bold, innovative, visionary, and welcoming,” said Charles Elachi, JPL’s director from 2001 to 2016. “He was an undisputed leader with an upbeat, fun attitude and left an indelible mark on the laboratory and NASA. I am proud to have called him a friend.”

Casani received many awards over his lifetime, including NASA’s Exceptional Achievement Medal, the Management Improvement Award from the President of the United States for the Mariner Venus Mercury mission, and the Air and Space Museum Trophy for Lifetime Achievement.

News Media Contacts

Matthew Segal / Veronica McGregor
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307 / 818-354-9452
matthew.j.segal@jpl.nasa.gov / veronica.c.mcgregor@jpl.nasa.gov

Share

Details

Last Updated
Jun 25, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA’s Chandra Shares a New View of Our Galactic Neighbor
      The Andromeda galaxy, also known as Messier 31 (M31), is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
      The galaxy M31 has played an important role in many aspects of astrophysics, but particularly in the discovery of dark matter. In the 1960s, astronomer Vera Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.” Its nature remains one of the biggest open questions in astrophysics today, one which NASA’s upcoming Nancy Grace Roman Space Telescope is designed to help answer.
      X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major This new composite image contains data of M31 taken by some of the world’s most powerful telescopes in different kinds of light. This image includes X-rays from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton (represented in red, green, and blue); ultraviolet data from NASA’s retired GALEX (blue); optical data from astrophotographers using ground based telescopes (Jakob Sahner and Tarun Kottary); infrared data from NASA’s retired Spitzer Space Telescope, the Infrared Astronomy Satellite, COBE, Planck, and Herschel (red, orange, and purple); and radio data from the Westerbork Synthesis Radio Telescope (red-orange).
      The Andromeda Galaxy (M31) in Different Types of Light.X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major Each type of light reveals new information about this close galactic relative to the Milky Way. For example, Chandra’s X-rays reveal the high-energy radiation around the supermassive black hole at the center of M31 as well as many other smaller compact and dense objects strewn across the galaxy. A recent paper about Chandra observations of M31 discusses the amount of X-rays produced by the supermassive black hole in the center of the galaxy over the last 15 years. One flare was observed in 2013, which appears to represent an amplification of the typical X-rays seen from the black hole.
      These multi-wavelength datasets are also being released as a sonification, which includes the same wavelengths of data in the new composite. In the sonification, the layer from each telescope has been separated out and rotated so that they stack on top of each other horizontally, beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes, from lower-energy radio waves up through the high energy of X-rays. Meanwhile, the brightness of each source controls volume, and the vertical location dictates the pitch.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      In this sonification of M31, the layers from each telescope has been separated out and rotated so that they stack on top of each other horizontally beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes ranging from lower-energy radio waves up through the high-energy of X-rays. Meanwhile, the brightness of each source controls volume and the vertical location dictates the pitch.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida This new image of M31 is released in tribute to the groundbreaking legacy of Dr. Vera Rubin, whose observations transformed our understanding of the universe. Rubin’s meticulous measurements of Andromeda’s rotation curve provided some of the earliest and most convincing evidence that galaxies are embedded in massive halos of invisible material — what we now call dark matter. Her work challenged long-held assumptions and catalyzed a new era of research into the composition and dynamics of the cosmos. In recognition of her profound scientific contributions, the United States Mint has recently released a quarter in 2025 featuring Rubin as part of its American Women Quarters Program — making her the first astronomer honored in the series.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features several images and a sonification video examining the Andromeda galaxy, our closest spiral galaxy neighbor. This collection helps astronomers understand the evolution of the Milky Way, our own spiral galaxy, and provides a fascinating insight into astronomical data gathering and presentation.
      Like all spiral galaxies viewed at this distance and angle, Andromeda appears relatively flat. Its spiraling arms circle around a bright core, creating a disk shape, like a large dinner plate. In most of the images in this collection, Andromeda’s flat surface is tilted to face our upper left.
      This collection features data from some of the world’s most powerful telescopes, each capturing light in a different spectrum. In each single-spectrum image, Andromeda has a similar shape and orientation, but the colors and details are dramatically different.
      In radio waves, the spiraling arms appear red and orange, like a burning, loosely coiled rope. The center appears black, with no core discernible. In infrared light, the outer arms are similarly fiery. Here, a white spiraling ring encircles a blue center with a small golden core. The optical image is hazy and grey, with spiraling arms like faded smoke rings. Here, the blackness of space is dotted with specks of light, and a small bright dot glows at the core of the galaxy. In ultraviolet light the spiraling arms are icy blue and white, with a hazy white ball at the core. No spiral arms are present in the X-ray image, making the bright golden core and nearby stars clear and easy to study.
      In this release, the single-spectrum images are presented side by side for easy comparison. They are also combined into a composite image. In the composite, Andromeda’s spiraling arms are the color of red wine near the outer edges, and lavender near the center. The core is large and bright, surrounded by a cluster of bright blue and green specks. Other small flecks in a variety of colors dot the galaxy, and the blackness of space surrounding it.
      This release also features a thirty second video, which sonifies the collected data. In the video, the single-spectrum images are stacked vertically, one atop the other. As the video plays, an activation line sweeps across the stacked images from left to right. Musical notes ring out when the line encounters light. The lower the wavelength energy, the lower the pitches of the notes. The brighter the source, the louder the volume.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 EditorLee MohonContactLane Figueroa Related Terms
      Andromeda Galaxy Chandra X-Ray Observatory Galaxies Marshall Astrophysics Marshall Space Flight Center The Universe Explore More
      6 min read NICER Status Updates
      Article 1 day ago 2 min read Hubble Studies Small but Mighty Galaxy
      This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in…
      Article 5 days ago 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field
      For 540 million years, the ebb and flow in the strength of Earth’s magnetic field…
      Article 1 week ago View the full article
    • By NASA
      NASA astronaut Nichole Ayers conducts research operations inside the Destiny laboratory module’s Microgravity Science Glovebox aboard the International Space Station.Credit: NASA Students attending the U.S. Space and Rocket Center Space Camp in Huntsville, Alabama, will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions.
      At 12:40 p.m. EDT on Tuesday, July 1, NASA astronauts Anne McClain, Jonny Kim, and Nichole Ayers will answer student questions. Ayers is a space camp alumna.
      Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
      The U.S. Space and Rocket Center will host the downlink while celebrating the 65th anniversary of NASA’s Marshall Space Flight Center. This event is open to the public.
      Media interested in covering the event must RSVP by 5 p.m., Friday, June 27, to Pat Ammons at: 256-721-5429 or pat.ammons@spacecamp.com.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 4 min read
      NASA-Assisted Scientists Get Bird’s-Eye View of Population Status
      Through the eBird citizen scientist program, millions of birders have recorded their observations of different species and submitted checklists to the Cornell Lab of Ornithology. Through a partnership with NASA, the lab has now used this data to model and map bird population trends for nearly 500 North American species.
      Led by Alison Johnston of the University of St. Andrews in Scotland, the researchers reported that 75% of bird species in the study are declining at wide-range scales. And yet this study has some good news for birds. The results, published in Science in May, offer insights and projections that could shape the future conservation of the places where birds make their homes.
      “This project demonstrates the power of merging in situ data with NASA remote sensing to model biological phenomena that were previously impossible to document,” said Keith Gaddis, NASA’s Biological Diversity and Ecological Forecasting program manager at the agency’s headquarters in Washington, who was not involved in the study.  “This data provides not just insight into the Earth system but also provides actionable guidance to land managers to mitigate biodiversity loss.”
      Rock wren in Joshua Tree National Park. National Park Service / Jane Gamble A team from Cornell, the University of St. Andrews, and the American Bird Conservancy used land imaging data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to distinguish among such specific bird habitats as open forests, dense shrublands, herbaceous croplands, and forest/cropland mosaics. They also drew on NASA weather information and water data that matched the dates and times when birders made their reports.
      When combined with a 14-year set of eBird checklists — 36 million sets of species observations and counts, keyed directly to habitats — the satellite data gave researchers almost a strong foundation to produce a clear picture of the health of bird populations. But there was one missing piece.
      Wrestling with Wren Data
      While some eBird checklists come from expert birders who’ve hiked deep into wildlife preserves, others are sent in by novices watching bird feeders and doing the dishes. This creates what Cornell statistician Daniel Fink described as “an unstructured, very noisy data set,” complete with gaps in the landscape that birders did not reach and, ultimately, some missing birds.
      To account for gaps where birds weren’t counted, the researchers trained machine learning models to fill in the maps based on the remote sensing data. “For every single species — say the rock wren — we’ve created a simulation that mimics the species and a variety of ways that it could respond to changes in the environment,” Johnston said. “Thousands of simulations underlie the results we showed.”
      CornellLab eBird The researchers achieved unprecedented resolution, zeroing in on areas 12 miles by 12 miles (27 km by 27 km), the same area as Portland, Oregon. This new population counting method can also be applied to eBird data from other locations, Fink said. “Now we’re using modeling to track bird populations — not seasonally through the year, but acrossthe years — a major milestone,” he added.
      “We’ve been able to take citizen science data and, through machine learning methodology, put it on the same footing as traditionally structured surveys, in terms of the type of signal we can find,” said Cornell science product manager Tom Auer. “It will increase the credibility and confidence of people who use this information for precise conservation all over the globe.”
      The Up Side
      Since 1970, North America has lost one-quarter of its breeding birds, following a global trend of declines across species. The causes range from increased pollution and land development to changing climate and decreased food resources. Efforts to reverse this loss depend on identifying the areas where birds live at highest risk, assessing their populations, and pinpointing locations where conservation could help most.
      For 83% of the reported species in the new study, the decline was greatest in spots where populations had previously been most abundant — indicating problems with the habitat.
      “Even in species where populations are declining a lot, there are still places of hope, where the populations are going up,” Johnston said. The team found population increases in the maps of 97% of the reported species. “That demonstrates that there’s opportunity for those species.”
      “Birds face so many challenges,” said Cornell conservationist Amanda Rodewald. “This research will help us make strategic decisions about making changes that are precise, effective, and less costly. This is transformative. Now we can really drill in and know where specifically we’re going to be able to have the most positive impact in trying to stem bird declines.”
      By Karen Romano Young
      NASA Headquarters, Washington
      Share








      Details
      Last Updated Jun 25, 2025 Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      1 week ago
      1 min read From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks.


      Article


      1 week ago
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In addition to drilling rock core samples, the science team has been grinding its way into rocks to make sense of the scientific evidence hiding just below the surface.
      NASA’s Perseverance rover uses an abrading bit to get below the surface of a rocky out-crop nicknamed “Kenmore” on June 10. The eight images that make up this video were taken approximately one minute apart by one of the rover’s front hazard-avoidance cameras. NASA/JPL-Caltech On June 3, NASA’s Perseverance Mars rover ground down a portion of a rock surface, blew away the resulting debris, and then went to work studying its pristine interior with a suite of instruments designed to determine its mineralogic makeup and geologic origin. “Kenmore,” as nicknamed by the rover science team, is the 30th Martian rock that Perseverance has subjected to such in-depth scrutiny, beginning with drilling a two-inch-wide (5-centimeter-wide) abrasion patch.  
      “Kenmore was a weird, uncooperative rock,” said Perseverance’s deputy project scientist, Ken Farley from Caltech in Pasadena, California. “Visually, it looked fine — the sort of rock we could get a good abrasion on and perhaps, if the science was right, perform a sample collection. But during abrasion, it vibrated all over the place and small chunks broke off. Fortunately, we managed to get just far enough below the surface to move forward with an analysis.”
      The science team wants to get below the weathered, dusty surface of Mars rocks to see important details about a rock’s composition and history. Grinding away an abrasion patch also creates a flat surface that enables Perseverance’s science instruments to get up close and personal with the rock.
      This close-up view of an abrasion showing distinctive “tool marks” created by the Perseverance’s abrading bit was acquired on June 5. The image was taken from approximately 2.76 inches (7 centimeters) away by the rover’s WATSON imager. NASA/JPL-Caltech/MSSS Perseverance’s gold-colored abrading bit takes center stage in this image of the rover’s drill taken by the Mastcam-Z instrument on Aug. 2, 2021, the 160th day of the mission to Mars.NASA/JPL-Caltech/ASU/MSSS Time to Grind
      NASA’s Mars Exploration Rovers, Spirit and Opportunity, each carried a diamond-dust-tipped grinder called the Rock Abrasion Tool (RAT) that spun at 3,000 revolutions per minute as the rover’s robotic arm pushed it deeper into the rock. Two wire brushes then swept the resulting debris, or tailings, out of the way. The agency’s Curiosity rover carries a Dust Removal Tool, whose wire bristles sweep dust from the rock’s surface before the rover drills into the rock. Perseverance, meanwhile, relies on a purpose-built abrading bit, and it clears the tailings with a device that surpasses wire brushes: the gaseous Dust Removal Tool, or gDRT.
      “We use Perseverance’s gDRT to fire a 12-pounds-per-square-inch (about 83 kilopascals) puff of nitrogen at the tailings and dust that cover a freshly abraded rock,” said Kyle Kaplan, a robotic engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Five puffs per abrasion — one to vent the tanks and four to clear the abrasion. And gDRT has a long way to go. Since landing at Jezero Crater over four years ago, we’ve puffed 169 times. There are roughly 800 puffs remaining in the tank.” The gDRT offers a key advantage over a brushing approach: It avoids any terrestrial contaminants that might be on a brush from getting on the Martian rock being studied.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video captures a test of Perseverance’s Gaseous Dust Removal Tool (gDRT) in a vacuum chamber at NASA’s Jet Propulsion Laboratory in August 2020. The tool fires puffs of nitrogen gas at the tailings and dust that cover a rock after it has been abraded by the rover.NASA/JPL-Caltech Having collected data on abraded surfaces more than 30 times, the rover team has in-situ science (studying something in its original place or position) collection pretty much down. After gDRT blows the tailings away, the rover’s WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) imager (which, like gDRT, is at the end of the rover’s arm) swoops in for close-up photos. Then, from its vantage point high on the rover’s mast, SuperCam fires thousands of individual pulses from its laser, each time using a spectrometer to determine the makeup of the plume of microscopic material liberated after every zap. SuperCam also employs a different spectrometer to analyze the visible and infrared light that bounces off the materials in the abraded area.
      “SuperCam made observations in the abrasion patch and of the powdered tailings next to the patch,” said SuperCam team member and “Crater Rim” campaign science lead, Cathy Quantin-Nataf of the University of Lyon in France. “The tailings showed us that this rock contains clay minerals, which contain water as hydroxide molecules bound with iron and magnesium — relatively typical of ancient Mars clay minerals. The abrasion spectra gave us the chemical composition of the rock, showing enhancements in iron and magnesium.”
      Later, the SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) and PIXL (Planetary Instrument for X-ray Lithochemistry) instruments took a crack at Kenmore, too. Along with supporting SuperCam’s discoveries that the rock contained clay, they detected feldspar (the mineral that makes much of the Moon brilliantly bright in sunlight). The PIXL instrument also detected a manganese hydroxide mineral in the abrasion — the first time this type of material has been identified during the mission.  
      With Kenmore data collection complete, the rover headed off to new territories to explore rocks — both cooperative and uncooperative — along the rim of Jezero Crater.
      “One thing you learn early working on Mars rover missions is that not all Mars rocks are created equal,” said Farley. “The data we obtain now from rocks like Kenmore will help future missions so they don’t have to think about weird, uncooperative rocks. Instead, they’ll have a much better idea whether you can easily drive over it, sample it, separate the hydrogen and oxygen contained inside for fuel, or if it would be suitable to use as construction material for a habitat.”
      Long-Haul Roving
      On June 19 (the 1,540th Martian day, or sol, of the mission), Perseverance bested its previous record for distance traveled in a single autonomous drive, trekking 1,348 feet (411 meters). That’s about 210 feet (64 meters) more than its previous record, set on April 3, 2023 (Sol 753). While planners map out the rover’s general routes, Perseverance can cut down driving time between areas of scientific interest by using its self-driving system, AutoNav.
      “Perseverance drove 4½ football fields and could have gone even farther, but that was where the science team wanted us to stop,” said Camden Miller, a rover driver for Perseverance at JPL. “And we absolutely nailed our stop target location. Every day operating on Mars, we learn more on how to get the most out of our rover. And what we learn today future Mars missions won’t have to learn tomorrow.”
      News Media Contact
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov    
      2025-082
      Share
      Details
      Last Updated Jun 25, 2025 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
      5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
      Article 2 days ago 4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 3 weeks ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 4 crew launches atop the Falcon 9 rocket from NASA’s Kennedy Space Center to the International Space Station.Credit: NASA As part of NASA’s efforts to expand access to space, four private astronauts are in orbit following the successful launch of the fourth all private astronaut mission to the International Space Station.
      A SpaceX Dragon spacecraft lifted off at 2:31 a.m. EDT Wednesday from Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying Axiom Mission 4 crew members Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space as commander, ISRO (Indian Space Research Organisation) astronaut and pilot Shubhanshu Shukla, and mission specialists ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      “Congratulations to Axiom Space and SpaceX on a successful launch,” said NASA acting Administrator Janet Petro. “Under President Donald Trump’s leadership, America has expanded international participation and commercial capabilities in low Earth orbit. U.S. industry is enabling astronauts from India, Poland, and Hungary to return to space for the first time in over forty years. It’s a powerful example of American leadership bringing nations together in pursuit of science, discovery, and opportunity.”
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      This mission serves as an example of the success derived from collaboration between NASA’s international partners and American commercial space companies.
      Live coverage of the spacecraft’s arrival will begin at 5 a.m., Thursday, June 26, on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The spacecraft is scheduled to autonomously dock at approximately 7 a.m. to the space-facing port of the space station’s Harmony module.
      Once aboard the station, Expedition 73 crew members, including NASA astronauts, Nicole Ayers, Anne McClain, and Jonny Kim, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Sergey Ryzhikov, and Alexey Zubritsky will welcome the astronauts.
      The crew is scheduled to remain at the space station, conducting microgravity research, educational outreach, and commercial activities for about two weeks before a return to Earth and splashdown off the coast of California.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, empowers U.S. industry, and enables the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
  • Check out these Videos

×
×
  • Create New...