Jump to content

Cracks and Ridges on Europa


Recommended Posts

  • Publishers
Posted
Photo of Europa terrain
This enhanced color image shows cracks and ridges on Europa’s surface that reveal a detailed geologic history.
NASA/JPL-Caltech/Cynthia Phillips

This enhanced color image shows cracks and ridges on Europa’s surface that reveal a detailed geologic history. Some ridges, such as the prominent one at top right, develop into long, arc-shaped “cycloids” that may be related to changing tidal forces as Europa orbits Jupiter. The wall of this ridge stands perhaps a third of a mile (0.5 kilometer) above the surrounding ridged plains, although the edges are likely not as steep as they appear in this view.

The view was captured by NASA’s Galileo spacecraft on February 2, 1999, during its E19 orbit, when the spacecraft was about 2500 miles (4000 km) from the surface of Europa. Resolution in the scene is 295 feet (90 meters) per pixel. North is toward bottom left. Images taken through near-infrared, green and violet filters were combined to create the view.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This SectionScience Europa Clipper Europa: Ocean World Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Scientists think there is an ocean within Jupiter’s moon Europa. NASA-JPL astrobiologist Kevin Hand explains why scientists are so excited about the potential of this ice-covered world to answer one of humanity’s most profound questions. Scientists think there is an ocean within Jupiter’s moon Europa. NASA-JPL astrobiologist Kevin Hand explains why scientists are so excited about the potential of this ice-covered world to answer one of humanity’s most profound questions.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Reddish Bands on Europa Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   This colorized image of Europa is a product of clear-filter grayscale data from one orbit of NASA’s Galileo spacecraft.NASA/JPL-Caltech/SETI Institute Downloads
      View All Europa Resources TIF
      May 28, 2025
      TIFF (1.64 MB)
      This colorized image of Europa is a product of clear-filter grayscale data from one orbit of NASA’s Galileo spacecraft, combined with lower-resolution color data taken on a different orbit.
      The blue-white terrains indicate relatively pure water ice, whereas the reddish areas contain water ice mixed with hydrated salts, potentially magnesium sulfate or sulfuric acid. The reddish material is associated with the broad band in the center of the image, as well as some of the narrower bands, ridges, and disrupted chaos-type features. It is possible that these surface features may have communicated with a global subsurface ocean layer during or after their formation.
      Part of the terrain in this previously unreleased color view is seen in the monochrome image, PIA01125.
      The image area measures approximately 101 by 103 miles (163 km by 167 km). The grayscale images were obtained on November 6, 1997, during the Galileo spacecraft’s 11th orbit of Jupiter, when the spacecraft was approximately 13,237 miles (21,700 kilometers) from Europa. These images were then combined with lower-resolution color data obtained in 1998, during the spacecraft’s 14th orbit of Jupiter, when the spacecraft was 89,000 miles (143,000 km) from Europa.
      JPL is a division of the California Institute of Technology in Pasadena.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Europa’s Stunning Surface Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view.NASA/JPL-Caltech/SETI Institute Downloads
      View All Europa Resources JPG
      May 28, 2025
      JPEG (2.59 MB)
      The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution.
      The view was previously released as a mosaic with lower resolution and strongly enhanced color (see PIA02590). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye.
      The scene shows the stunning diversity of Europa’s surface geology. Long, linear cracks and ridges crisscross the surface, interrupted by regions of disrupted terrain where the surface ice crust has been broken up and re-frozen into new patterns.
      Color variations across the surface are associated with differences in geologic feature type and location. For example, areas that appear blue or white contain relatively pure water ice, while reddish and brownish areas include non-ice components in higher concentrations. The polar regions, visible at the left and right of this view, are noticeably bluer than the more equatorial latitudes, which look more white. This color variation is thought to be due to differences in ice grain size in the two locations.
      Images taken through near-infrared, green and violet filters have been combined to produce this view. The images have been corrected for light scattered outside of the image, to provide a color correction that is calibrated by wavelength. Gaps in the images have been filled with simulated color based on the color of nearby surface areas with similar terrain types.
      This global color view consists of images acquired by the Galileo Solid-State Imaging (SSI) experiment on the spacecraft’s first and fourteenth orbits through the Jupiter system, in 1995 and 1998, respectively. Image scale is 1 mile (1.6 kilometers) per pixel. North on Europa is at right.
      The Galileo mission was managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, for the agency’s Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology, Pasadena.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Source Region for Possible… Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   A map centered at the estimated source region for potential plumes from Europa.NASA/JPL-Caltech/SETI Institute Downloads
      View All Europa Resources Hi-res
      May 29, 2025
      JPEG (2.71 MB)
      This reprojection of the official USGS Europa basemap is centered at the estimated source region for potential plumes that might have been detected using the Hubble Space Telescope. The view is centered at -65 degrees latitude, 183 degrees longitude.
      In addition to the plume source region, the image also shows the hemisphere of Europa that might be affected by plume deposits. This map is composed of images from NASA’s Galileo and Voyager missions. The black region near the south pole results from gaps in imaging coverage.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By NASA
      Explore This SectionScience Europa Clipper 3-D Cilix Crater on Europa Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   This view of Cilix impact crater on Europa was created in 2013 using 3-D stereo images.NASA/JPL-Caltech/Cynthia Phillips Downloads
      View All Europa Resources
      May 29, 2025
      JPEG (367.26 KB)
      This view of Cilix impact crater on Europa was created in 2013 using 3-D stereo images taken by NASA’s Galileo spacecraft, combined with advanced image processing techniques. The crater has a diameter of about 11 miles (18 kilometers).
      This image, which combines a 3-D Digital Elevation Model, or DEM, with original imagery, shows that the crater rim rises steeply for about 980 feet (300 meters) above a flat crater floor that is interrupted by a central peak which has a height of about 660 feet (200 meters). Such central peaks are common on other bodies in the solar system. Young, well-preserved craters like Cilix are rare on Europa’s surface, where ongoing geologic activity is thought to disrupt most surface features over timescales of tens of millions of years.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
  • Check out these Videos

×
×
  • Create New...