Jump to content

Recommended Posts

  • Publishers
Posted
An infographic titled “What is DM-1” offers a detailed visual and textual breakdown of the Demonstration Motor-1 test at Northrop Grumman’s facility in Promontory, Utah. The left side features a Q&A section that explains the purpose of the event and outlines key testing objectives, such as evaluating upgraded booster components for NASA’s SLS (Space Launch System). On the right, the infographic highlights the critical role SLS boosters play during Artemis missions, emphasizing their immense thrust and engineering significance. At the bottom right, a silhouette of the state of Utah includes an arrow pinpointing the location of Promontory, visually grounding the event’s geographic setting.
NASA/Kevin O’Brien

Demonstration Motor-1 (DM-1) is the first full-scale ground test of the evolved five-segment solid rocket motor of NASA’s SLS (Space Launch System) rocket. The event will take place in Promontory, Utah, and will be used as an opportunity to test several upgrades made from the current solid rocket boosters. Each booster burns six tons of solid propellant every second and together generates almost eight million pounds of thrust.

News Media Contact

Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala. 
256-544-0034 
jonathan.e.deal@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Space Systems Command and United Launch Alliance's launch teams successfully completed the inaugural launch of a Vulcan Centaur rocket, carrying the U.S. Space Force-106 mission into geosynchronous Earth orbit.

      View the full article
    • By Space Force
      Space Systems Command and United Launch Alliance's launch teams successfully completed the inaugural launch of a Vulcan Centaur rocket, carrying the U.S. Space Force-106 mission into geosynchronous Earth orbit.

      View the full article
    • By NASA
      NASA The Bumper V-2 launches from Cape Canaveral in this July 24, 1950, photo. In the 75 years since this milestone, this facility has seen thousands of rockets take to the skies, destined for Earth orbit, the Moon, planets, and even beyond. From Cape Canaveral and from NASA’s Kennedy Space Center in Florida nearby, astronauts launched on the first pioneering crewed missions, headed for Moon landings, and helped to build the International Space Station.
      NASA Kennedy, a premier multi-user spaceport with about 100 private-sector partners and nearly 250 partnership agreements, is still the agency’s main launch site. NASA’s SpaceX Crew-11 mission, part of the agency’s Commercial Crew Program, will launch from NASA Kennedy no earlier than 12:09 p.m. EDT, Thursday, July 31. The Crew-11 mission members – NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov – are in crew quarantine before their voyage to the orbital laboratory.
      Image credit: NASA
      View the full article
    • By NASA
      NASA/Kevin O’Brien NASA’s SLS (Space Launch System) solid rocket boosters are the largest, most powerful solid propellant boosters to ever fly. Standing 17 stories tall and burning approximately six tons of propellant every second, each booster generates 3.6 million pounds of a thrust for a total of 7.2 million pounds: more thrust than 14 four-engine jumbo commercial airliners. Together, the SLS twin boosters provide more than 75 percent of the total thrust at launch. Each booster houses eight booster separation motors which are responsible for separating the boosters from the core stage during flight.
      At the top of each booster is the frustum—a truncated cone-shaped structure that, along with the nose cone, forms the aerodynamic fairing. This frustum houses four of the separation motors, while the remaining four are located at the bottom within the aft skirt.
      Image Credit: NASA/Kevin O’Brien
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the TFINER concept.NASA/James Bickford James Bickford
      Charles Stark Draper Laboratory, Inc.
      The Thin-Film Nuclear Engine Rocket (TFINER) is a novel space propulsion technology that enables aggressive space exploration for missions that are impossible with existing approaches. The concept uses thin layers of energetic radioisotopes to directly generate thrust. The emission direction of its natural decay products is biased by a substrate to accelerate the spacecraft. A single stage design is very simple and can generate velocity changes of ~100 km/s using a few kilograms of fuel and potentially more than 150 km/s for more advanced architectures.
      The propulsion system enables a rendezvous with intriguing interstellar objects such as ‘Oumuamua that are on hyperbolic orbits through our solar system. A particular advantage is the ability to maneuver in deep space to find objects with uncertainty in their location. The same capabilities also enable a fast trip to the solar gravitational focus to image multiple potentially habitable exoplanets. Both types of missions require propulsion outside the solar system that is an order of magnitude beyond the performance of existing technology. The phase 2 effort will continue to mature TFINER and the mission design. The program will work towards small scale thruster experiments in the near term. In parallel, isotope production paths that can also be leveraged for other space exploration and medical applications will be pursued. Finally, advanced architectures such as an Oberth solar dive maneuver and hybrid approaches that leverage solar sails near the Sun, will be explored to enhance mission performance.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...