Jump to content

NASA’s LRO Views ispace HAKUTO-R Mission 2 Moon Lander Impact Site


Recommended Posts

  • Publishers
Posted

On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.

A black and white image of the surface of the Moon taken from NASA's Lunar Reconnaissance Orbiter showing : HAKUTO-R Mission 2 lunar lander impact site, a dark smudge surrounded by a subtle bright halo. A white arrow points to the site.
RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.
Credit: NASA/Goddard/Arizona State University.

RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.

LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.

The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.

Gif of black and white images of the surface of the Moon taken from NASA's Lunar Reconnaissance Orbiter showing before and after the HAKUTO-R Mission 2 lunar lander impact. The second image shows  a dark smudge surrounded by a subtle bright halo.
This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.
Credit: NASA/Goddard/Arizona State University. 

LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.

More on this story from Arizona State University’s LRO Camera website

Media Contact
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
lonnie.shekhtman@nasa.gov

Share

Details

Last Updated
Jun 20, 2025
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: ESA astronaut Sophie Adenot’s first mission to the International Space Station now has a name: εpsilon. The mission name and patch were announced today at the Paris Air Show by ESA Director General Josef Aschbacher, French President Emmanuel Macron, and Sophie Adenot, who joined remotely from the United States, where she is training for her spaceflight.
      Sophie Adenot is one of the five astronauts selected from ESA’s most recent astronaut class of 2022. Following the successful completion of their basic training in spring 2024, Josef Aschbacher announced during the Space Council in Brussels that Sophie and fellow graduate Raphaël Liégois had been assigned their first missions to the International Space Station, currently planned for 2026.
      The εpsilon name and patch reflect the power of small, yet impactful contributions and how multiple parts unite to create a whole.
      In mathematics, “ε” represents something small. In the extensive collaborative effort of space exploration, involving thousands of participants, all roles, including the astronaut's role, stay small yet meaningful.
      The hummingbird, central to the patch, embodies this idea; though one of Earth’s smallest birds, it plays a crucial role in the jungle’s ecosystem, pollinating numerous plants.
      Encircling the patch is a ring of small dots, symbolising the many small contributions that together make great achievements possible. All these little actions that can be coordinated to form a circle and close the loop. At the top, three of these dots are coloured – blue, white, and red – representing Sophie’s home country, France, and ESA’s exploration destinations: Earth, the Moon, and Mars.
      The name εpsilon, being the fifth Greek letter and the fifth brightest star of the Leo constellation, also follows the French tradition to name human spaceflight missions after celestial bodies. It also pays tribute to the five career astronauts of ESA’s 2022 class. 
      Three lines emerge from the “i” of the εpsilon, shaping the tail of a shooting star, a poetic reminder that dreams keep us alive.
      At the base of the patch lies a rounded blue shape, representing Earth’s surface and its natural beauty: mountains, forests and landscapes that Sophie enjoys exploring. It serves as a reminder of our motivation for spaceflight: to explore, learn, and return with this knowledge to benefit life on Earth.
      From an emotional perspective, the same message is conveyed. In life's intricate tapestry, small threads contribute to create the most beautiful patterns. A kind word, a gentle smile, a moment of patience - these seemingly insignificant actions can transform lives and shape destinies. This patch invites each of us to embrace the potential of our smallest actions as they ripple outward, touching hearts and inspiring souls.
      During her εpsilon mission, Sophie will perform numerous scientific experiments, many of them European, conduct medical research, support Earth observation and contribute to operations and maintenance aboard the International Space Station.
      View the full article
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 19th JUNE Backyard Astronomy with Lunt Telescope
    • By NASA
      3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
      Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
      Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
      The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
      Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
      The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
      The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
      NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 7 months ago Keep Exploring Discover More Topics From NASA
      Artemis III
      Gateway Lunar Space Station
      Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
      Space Launch System (SLS)
      Humans In Space
      View the full article
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 16th JUNE Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 16th JUNE Backyard Astronomy with Lunt Telescope
  • Check out these Videos

×
×
  • Create New...