Members Can Post Anonymously On This Site
NASA’s LRO Views ispace HAKUTO-R Mission 2 Moon Lander Impact Site
-
Similar Topics
-
By NASA
With one of its solar arrays deployed, NASA’s Lunar Trailblazer sits in a clean room at Lockheed Martin Space in Colorado during testing in August 2024. The mission was to investigate the nature of the Moon’s water, but controllers lost contact with the spacecraft a day after launch in February 2025.Lockheed Martin Space The small satellite was to map lunar water, but operators lost contact with the spacecraft the day after launch and were unable to recover the mission.
NASA’s Lunar Trailblazer ended its mission to the Moon on July 31. Despite extensive efforts, mission operators were unable to establish two-way communications after losing contact with the spacecraft the day following its Feb. 26 launch.
The mission aimed to produce high-resolution maps of water on the Moon’s surface and determine what form the water is in, how much is there, and how it changes over time. The maps would have supported future robotic and human exploration of the Moon as well as commercial interests while also contributing to the understanding of water cycles on airless bodies throughout the solar system.
Lunar Trailblazer shared a ride on the second Intuitive Machines robotic lunar lander mission, IM-2, which lifted off at 7:16 p.m. EST on Feb. 26 aboard a SpaceX Falcon 9 rocket from the agency’s Kennedy Space Center in Florida. The small satellite separated as planned from the rocket about 48 minutes after launch to begin its flight to the Moon. Mission operators at Caltech’s IPAC in Pasadena established communications with the small spacecraft at 8:13 p.m. EST. Contact was lost the next day.
Without two-way communications, the team was unable to fully diagnose the spacecraft or perform the thruster operations needed to keep Lunar Trailblazer on its flight path.
“At NASA, we undertake high-risk, high-reward missions like Lunar Trailblazer to find revolutionary ways of doing new science,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “While it was not the outcome we had hoped for, mission experiences like Lunar Trailblazer help us to learn and reduce the risk for future, low-cost small satellites to do innovative science as we prepare for a sustained human presence on the Moon. Thank you to the Lunar Trailblazer team for their dedication in working on and learning from this mission through to the end.”
The limited data the mission team had received from Lunar Trailblazer indicated that the spacecraft’s solar arrays were not properly oriented toward the Sun, which caused its batteries to become depleted.
For several months, collaborating organizations around the world — many of which volunteered their assistance — listened for the spacecraft’s radio signal and tracked its position. Ground radar and optical observations indicated that Lunar Trailblazer was in a slow spin as it headed farther into deep space.
“As Lunar Trailblazer drifted far beyond the Moon, our models showed that the solar panels might receive more sunlight, perhaps charging the spacecraft’s batteries to a point it could turn on its radio,” said Andrew Klesh, Lunar Trailblazer’s project systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The global community’s support helped us better understand the spacecraft’s spin, pointing, and trajectory. In space exploration, collaboration is critical — this gave us the best chance to try to regain contact.”
However, as time passed, Lunar Trailblazer became too distant to recover as its telecommunications signals would have been too weak for the mission to receive telemetry and to command.
Technological Legacy
The small satellite’s High-resolution Volatiles and Minerals Moon Mapper (HVM3) imaging spectrometer was built by JPL to detect and map the locations of water and minerals. The mission’s Lunar Thermal Mapper (LTM) instrument was built by the University of Oxford in the United Kingdom and funded by the UK Space Agency to gather temperature data and determine the composition of silicate rocks and soils to improve understanding of why water content varies over time.
“We’re immensely disappointed that our spacecraft didn’t get to the Moon, but the two science instruments we developed, like the teams we brought together, are world class,” said Bethany Ehlmann, the mission’s principal investigator at Caltech. “This collective knowledge and the technology developed will cross-pollinate to other projects as the planetary science community continues work to better understand the Moon’s water.”
Some of that technology will live on in the JPL-built Ultra Compact Imaging Spectrometer for the Moon (UCIS-Moon) instrument that NASA recently selected for a future orbital flight opportunity. The instrument, which has has an identical spectrometer design as HVM3, will provide the Moon’s highest spatial resolution data of surface lunar water and minerals.
More About Lunar Trailblazer
Lunar Trailblazer was selected by NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration) competition, which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain the lower overall cost, SIMPLEx missions have a higher risk posture and less-stringent requirements for oversight and management. This higher risk acceptance bolsters NASA’s portfolio of targeted science missions designed to test pioneering mission approaches.
Caltech, which manages JPL for NASA, led Lunar Trailblazer’s science investigation, and Caltech’s IPAC led mission operations, which included planning, scheduling, and sequencing of all spacecraft activities. Along with managing Lunar Trailblazer, NASA JPL provided system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. Lockheed Martin Space provided the spacecraft, integrated the flight system, and supported operations under contract with Caltech. The University of Oxford developed and provided the LTM instrument, funded by the UK Space Agency. Lunar Trailblazer, a project of NASA’s Lunar Discovery and Exploration Program, was managed by NASA’s Planetary Missions Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Isabel Swafford
Caltech IPAC
626-216-4257
iswafford@ipac.caltech.edu
2025-099
Explore More
5 min read NASA’s Europa Clipper Radar Instrument Proves Itself at Mars
Article 3 days ago 6 min read How Joint NASA-ESA Sea Level Mission Will Help Hurricane Forecasts
Article 3 days ago 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a media day at NASA’s Johnson Space Center in Houston in 2023.Credit: NASA As NASA prepares for its second year-long Mars simulated mission, media are invited to visit the ground-based habitat where the mission will take place, on Friday, Aug. 22, at the agency’s Johnson Space Center in Houston.
Scheduled to begin in October, four volunteer crew members will enter the agency’s Crew Health and Performance Exploration Analog (CHAPEA) 3D-printed habitat to live and work for a year to inform NASA’s preparations for human Mars missions.
The in-person media event includes an opportunity to speak with subject matter experts, and capture b-roll and photos inside the habitat. Crew members will not be available for interviews as they will arrive at NASA Johnson at a later date.
International media wishing to attend must request accreditation no later than 6 p.m. EDT (5 p.m. CDT), on Monday, Aug. 11. United States-based media have a deadline of 6 p.m. EDT (5 p.m. CDT), on Wednesday, Aug. 20, to register.
To request accreditation, media must contact the NASA Johnson newsroom at: 281-483-5111 or jsccommu@mail.nasa.gov. Space is limited. A copy of NASA’s media accreditation policy is available online.
Once the crew members kick off their mission, they will carry out various activities, including simulated Mars walks, robotic operations, habitat maintenance, medical technology tests, exercise, and crop growth. The crew also will face environmental stresses such as resource limitations, isolation, communication delays, and equipment failure, and work through these scenarios with the resources available inside the habitat.
To learn more about CHAPEA, visit:
https://www.nasa.gov/humans-in-space/chapea
-end-
Lauren Low
Headquarters, Washington
202-358-1600
lauren.e.low@nasa.gov
Kelsey Spivey / Mohi Kumar
Johnson Space Center, Houston
281-483-5111
kelsey.m.spivey@nasa.gov / mohi.kumar@nasa.gov
Share
Details
Last Updated Aug 04, 2025 LocationNASA Headquarters Related Terms
Crew Health and Performance Exploration Analog (CHAPEA) Humans in Space Johnson Space Center View the full article
-
By NASA
The Artemis II crew (from left to right) CSA (Canadian Space Agency) Jeremy Hansen, mission specialist; Christina Koch, mission specialist; Victor Glover, pilot; and Reid Wiseman, commander, don their Orion Crew Survival System Suits for a multi-day crew module training beginning Thursday, July 31, 2025 at the agency’s Kennedy Space Center in Florida. Behind the crew, wearing clean room apparel, are members of the Artemis II closeout crew. NASA/Rad Sinyak The first crew slated to fly in NASA’s Orion spacecraft during the Artemis II mission around the Moon early next year entered their spacecraft for a multi-day training at the agency’s Kennedy Space Center in Florida. Crew donned their spacesuits July 31 and boarded Orion to train and experience some of the conditions they can expect on their mission.
NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen participated in a suited crew test and crew equipment interface test, performing launch day and simulated orbital activities inside Orion.
Every milestone in the Artemis campaign brings us closer to landing Americans back on the Moon and pushing onward to Mars.
sEAN dUFFY
acting NASA Administrator
“In about six months, Artemis II astronauts will journey around the Moon for the first time in 53 years,” Duffy said. “America rallied behind Apollo because it represented the best of us – now it’s Artemis’ turn. They’re not just carrying a flag – they’re carrying the pride, power, and promise of the United States of America.”
With Orion powered on, the suited crew test was a close representation of what the crew can expect on launch day. The crew began the day by suiting up inside the spaceport’s Multi-Operation Support Building, donning their Orion crew survival system spacesuits, boarding the zero-emission crew transportation vehicles, and entering Orion, which is currently inside the Multi-Payload Processing Facility, where engineers have loaded its propellants over the course of several weeks.
Once in Orion, the crew performed several launch day activities, including communications checkouts and suit leak checks. For the first time, the crew was connected to the spacecraft and its communications and life control systems, and all umbilicals were connected while the spacecraft operated on full power.
Teams simulated several different ground and flight conditions to give the crew more experience managing them in real time. Some of the activities simulated scenarios where the crew was challenged to address potential issues while in space such as leaks and failure of the air revitalization system fan, which is needed to provide oxygen and remove carbon dioxide from the cabin. Getting this hands-on experience and learning how to act fast to overcome potential challenges during flight helps ensure the crew is ready for any scenario.
The test provides astronauts the ability to train on the actual hardware they will use during flight, allowing them and support teams the opportunity to familiarize themselves with the equipment in configurations very close to what will be experienced during flight. It also allows teams to verify compatibility between the equipment and systems with flight controller procedures, so they can make any final adjustments ahead of launch.
This test brings together the Artemis II crew and the Orion spacecraft that will carry them to the Moon and back.
Shawn Quinn
NASA's Exploration Ground Systems Program manager
“It signifies the immense amount of work that our operations and development teams put into making sure we are ready for launch.” Quinn said. “They have meticulously planned each operation, timing them to perfection – and now we put it to the test.”
Exchanging their spacesuits for cleanroom garments for the crew equipment interface test, and with the spacecraft powered off, the crew also performed many of the activities they are likely to do in flight and conducted additional equipment checks. The crew practiced removing and stowing the foot pans on the pilot and commander seats, which will allow them to have more open space in the cabin after launch. They also accessed the stowage lockers and familiarized themselves with cameras, associated cables and mounts, and the environmental control and life support system hardware.
In addition to getting practical experience with the actual hardware they’ll use in space, they also prepared for life in deep space, reviewing cabin labels, sleep arrangements and checklists, and the hygiene bay.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
View the full article
-
By Amazing Space
🔴 LIVE: Real Video Of Earth From Space RIGHT NOW - ISS HD Camera Views | 24/7 Space Station Feed
-
By NASA
NASA/Shawn Quinn On May 8, 2022, NASA’s Exploration Ground Systems’ Program Manager Shawn Quinn captured this crop of a full frame image of the Hadley–Apennine region of Earth’s Moon including the Apollo 15 landing site (very near the edge of the shadow of one of the lunar mountains in the area). Building upon the pioneers from the Apollo Program, Artemis crews will plan to verify capabilities for humans to explore deep space and pave the way for long-term exploration and science on the lunar surface.
Read the Artemis blog for the latest mission updates.
Image credit: NASA/Shawn Quinn
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.