Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Tech to Use Moonlight to Enhance Measurements from Space
      NASA's Arcstone instrument will be the first mission exclusively dedicated to measuring moonlight, or lunar reflectance, from space as a way to calibrate and improve science data collected by Earth-viewing, in-orbit instruments.  Credits: Blue Canyon Technologies NASA will soon launch a one-of-a-kind instrument, called Arcstone, to improve the quality of data from Earth-viewing sensors in orbit. In this technology demonstration, the mission will measure sunlight reflected from the Moon— a technique called lunar calibration. Such measurements of lunar spectral reflectance can ultimately be used to set a high-accuracy, universal standard for use across the international scientific community and commercial space industry.  
      To ensure satellite and airborne sensors are working properly, researchers calibrate them by comparing the sensor measurements against a known standard measurement. Arcstone will be the first mission exclusively dedicated to measuring lunar reflectance from space as a way to calibrate and improve science data collected by Earth-viewing, in-orbit instruments. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization demonstrates how Arcstone will operate while in orbit measuring lunar reflectance to establish a new calibration standard for future Earth-observing remote sensors. Arcstone’s satellite platform was manufactured by Blue Canyon Technologies. NASA/Tim Marvel/Blue Canyon Technologies “One of the most challenging tasks in remote sensing from space is achieving required instrument calibration accuracy on-orbit,” said Constantine Lukashin, principal investigator for the Arcstone mission and physical scientist at NASA’s Langley Research Center in Hampton, Virginia. “The Moon is an excellent and available calibration source beyond Earth’s atmosphere. The light reflected off the Moon is extremely stable and measurable at a very high level of detail. Arcstone’s goal is to improve the accuracy of lunar calibration to increase the quality of spaceborne remote sensing data products for generations to come.” 
      Across its planned six-month mission, Arcstone will use a spectrometer — a scientific instrument that measures and analyzes light by separating it into its constituent wavelengths, or spectrum — to measure lunar spectral reflectance. Expected to launch in late June as a rideshare on a small CubeSat, Arcstone will begin collecting data, a milestone called first light, approximately three weeks after reaching orbit. 
      “The mission demonstrates a new, more cost-efficient instrument design, hardware performance, operations, and data processing to achieve high-accuracy reference measurements of lunar spectral reflectance,” said Lukashin.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Measuring the lunar reflectance at the necessary ranges of lunar phase angles and librations is required to build a highly accurate lunar reference. A satellite platform in space would provide this required sampling. Arcstone will use a spectrometer to demonstrate the ability to observe and establish a data record of lunar spectral reflectance throughout its librations and phases for other instruments to use the Moon to calibrate sensors.NASA/Scientific Visualization Studio Measurements of lunar reflectance taken from Earth’s surface can be affected by interference from the atmosphere, which can complicate calibration efforts. Researchers already use the Sun and Moon to calibrate spaceborne instruments, but not at a level of precision and agreement that could come from having a universal standard.   
      Lukashin and colleagues want to increase calibration accuracy by getting above the atmosphere to measure reflected solar wavelengths in a way that provides a stable and universal calibration source. Another recent NASA mission, called the Airborne Lunar Spectral Irradiance mission also used sensors mounted on high-altitude aircraft to improve lunar irradiance measurements from planes. 
      There is not an internationally accepted standard (SI-traceable) calibration for lunar reflectance from space across the scientific community or the commercial space industry. 
      “Dedicated radiometric characterization measurements of the Moon have never been acquired from a space-based platform,” said Thomas Stone, co-investigator for Arcstone and scientist at the U.S. Geological Survey (USGS). “A high-accuracy, SI-traceable lunar calibration system enables several important capabilities for space-based Earth observing missions such as calibrating datasets against a common reference – the Moon, calibrating sensors on-orbit, and the ability to bridge gaps in past datasets.” 
      The Arcstone spacecraft with solar panels installed as it is tested before being integrated for launch. Blue Canyon Technologies If the initial Arcstone technology demonstration is successful, a longer Arcstone mission could allow scientists to make the Moon the preferred reference standard for many other satellites. The new calibration standard could also be applied retroactively to previous Earth data records to improve their accuracy or fill in data gaps for data fields. It could also improve high-precision sensor performance on-orbit, which is critical for calibrating instruments that may be sensitive to degradation or hardware breakdown over time in space. 
      “Earth observations from space play a critical role in monitoring the environmental health of our planet,” said Stone. “Lunar calibration is a robust and cost-effective way to achieve high accuracy and inter-consistency of Earth observation datasets, enabling more accurate assessments of Earth’s current state and more reliable predictions of future trends.” 
       
      The Arcstone technology demonstration project is funded by NASA’s Earth Science Technology Office’s In-space Validation of Earth Science Technologies. Arcstone is led by NASA’s Langley Research Center in partnership with Colorado University Boulder’s Laboratory for Atmospheric and Space Physics, USGS,  NASA Goddard Space Flight Center in Greenbelt, Maryland, Resonon Inc., Blue Canyon Technologies, and Quartus Engineering.  

      For more information on NASA’s Arcstone mission visit: 
      https://science.larc.nasa.gov/arcstone/about/
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jun 20, 2025 LocationNASA Langley Research Center Related Terms
      Science-enabling Technology Earth Earth Science Earth Science Division Earth's Moon General Goddard Space Flight Center Langley Research Center Lunar Science Science Instruments Science Mission Directorate Small Satellite Missions Technology Explore More
      3 min read NASA Measures Moonlight to Improve Earth Observations
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: Marking the first public day of this year’s International Paris Air Show, the President of France Emmanuel Macron visited the Paris Space Hub.  
      ESA Director General Josef Aschbacher and Director of Human and Robotic Exploration Daniel Neuenschwander welcomed President Macron, introducing him to the assembled French astronauts and a group of young space professionals in attendance.  
      French ESA astronaut Sophie Adenot joined by video link from the United States, where she is training for her upcoming mission to the International Space Station. Sophie detailed some of her training, explaining that no two days are alike. Fellow astronauts Thomas Pesquet, Jean-François Clervoy and Claudie Haignéré also addressed Sophie and offered their advice for her time in space. Together President Macron and Sophie announced that her mission will be named εpsilon, and revealed her mission patch.
      Speaking about the development of the space industry, President Macron said Europe must increase investment in commercial space, and emphasised the importance of complementarity of public and private investment – particularly with the upcoming ESA Council at Ministerial level and ongoing discussions for the next EU multiannual financial framework. He also mentioned the developing need for dual-use space capacity including surveillance. President Macron highlighted the importance of research and of making Europe a destination for researchers in line with the EU Choose Europe for Science initiative. He also called on Europe to improve its competitiveness in space. Watch a replay of the visit.  
      A new Letter of Intent between the European Space Agency and Dassault Aviation was also announced, signalling the common interest of the organisations in working on low Earth orbit exploration, in particular orbital vehicles. 
      View the full article
    • By USH
      Since November 2024, strange blinking lights have been reported worldwide, an unexplained phenomenon that’s left many puzzled. MrMBB333 believes he may have found a connection. 

      Also known as electrical pollution, dirty electricity refers to high-frequency voltage spikes that ride along standard power lines. These rogue signals, forms of electromagnetic interference (EMI), can spread through our infrastructure, causing devices to glitch or behave unpredictably. 
      If this interference is appearing globally, the source might be something massive, possibly deep within Earth’s core. Rogue frequencies from the core could travel up and interact with power grids, solar systems, and transmission lines, triggering widespread anomalies. 
      Supporting this idea is a discovery from NASA’s ANITA project in Antarctica. While searching for cosmic neutrinos, scientists instead detected impossible radio signals rising from deep within Earth, signals that defy current physics.  
      According to current science, these waves should have been absorbed by the Earth’s crust long before reaching the detectors. But they weren’t. 
      When researchers checked their findings against other experiments, nothing lined up. This means they didn’t detect neutrinos, but something entirely unknown. Could this be a new kind of particle? A glitch in reality? Or something even stranger? 
      Although it is not known whether the strange radio signals detected deep beneath the Antarctic ice are related to the rogue signals believed to originate from Earth's core, MrMBB333 suggests there could be a connection. He proposes that similar forms of electromagnetic interference (EMI) might be disrupting global electronics and even contributing to the mysterious blinking light phenomenon. 
      Another possible factor at play is that the magnetic field is weakening as well as Solar Cycle 25 — the current 11-year cycle of solar activity marked by the Sun’s magnetic field reversal and increasing sunspot activity. This cycle began in December 2019 and is expected to reach its peak in 2025. 
      Therefore, could this solar phenomenon be interfering with the rogue electromagnetic signals from the Earth’s core are behind the strange blinking lights observed around the world? 
      If that’s the case, although I don’t recall the blinking light phenomenon ever appearing this intensely before, then the strange lights may begin to fade as Solar Cycle 25 winds down. Still, that doesn’t explain the origin of the mysterious radio signals rising from deep beneath Antarctica’s ice.
        View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 1 min read
      From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks. The GEDI mission maps forest height and biomass from the International Space Station, while ICESat-2 fills polar data gaps. Together, they enable a first-of-its-kind global biomass map, guiding smarter forest conservation and carbon tracking.

      Original Video and Assets

      Share








      Details
      Last Updated Jun 17, 2025 Editor Earth Science Division Editorial Team Related Terms
      Earth Greenhouse Gases Video Series Explore More
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      5 days ago
      1 min read Leaf Year: Seeing Plants in Hyperspectral Color
      PACE now allows scientists to see three different pigments in vegetation, helping scientists pinpoint even…


      Article


      2 weeks ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.

      View the full article
    • By NASA
      2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
      An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.

      “As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”

      In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.

      NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.

      NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.

      NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

      Learn more about NASA’s SCaN Program at:
      https://www.nasa.gov/scan
      Share
      Details
      Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
      Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
      Communicating with Missions
      Communications Services Project
      Commercial Space News
      Near Space Network

      View the full article
  • Check out these Videos

×
×
  • Create New...