Members Can Post Anonymously On This Site
ESA - European Commission Press Conference at Paris Air Show 2025
-
Similar Topics
-
By European Space Agency
Video: 00:01:43 An essential part of ESA’s Space Safety programme is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a true circular economy in space, minimising the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030.
ESA has now taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE, planned for launch in 2029.
RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite, extending the life of geostationary satellites that need support with attitude and orbit control, but are otherwise in working order.
After verifying that it meets all the performance standards in a first demonstration, prime contractor, operator and co-founder D-Orbit will start commercial life extension services for geostationary satellites.
ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refuelling, refurbishment and assembling – all essential elements for creating a circular economy in space.
Watch with subtitles
View the full article
-
By European Space Agency
Week in images: 08-12 September 2025
Discover our week through the lens
View the full article
-
By NASA
NSTGRO Homepage
Andrew Arends
University of California, Davis
Astronaut-Powered Laundry Machine
Allan Attia
Stanford University
Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
Michael Auth
University of California, Santa Barbara
Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
Nicholas Brennan
Cornell University
Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
John Carter
Purdue University
Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
Thomas Clark
University of Colorado, Boulder
Data-Driven Representations of Trajectories in Cislunar Space
Nicholas Cmkovich
University of Wisconsin-Madison
Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
Kara Hardy
Michigan Technological University
Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
Tyler Heggenes
Utah State University
Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
Joseph Hesse-Withbroe
University of Colorado, Boulder
Decreasing Astronaut Radiation Doses with Magnetic Shields
Niya Hope-Glenn
Massachusetts Institute of Technology
Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
Adrianna Hudyma
University of Minnesota
Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
Tushaar Jain
Carnegie Mellon University
Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
Devin Johnson
Purdue University
Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
Jack Joshi
University of Texas at Austin
State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
John Knoll
William Marsh Rice University
Dexterous Manipulation via Vision-Intent-Action Models
Joseph Ligresti
Purdue University
Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
Alexander Madison
University of Central Florida
Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
Aurelia Moriyama-Gurish
Yale University
Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
Sophia Nowak
University of Wisconsin-Madison
Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
Jacob Ortega
Missouri University of Science and Technology
Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
John Riley O’Toole
University of Michigan
Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
Cort Reinarz
Texas A&M University
Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
Erica Sawczynec
University of Texas at Austin
A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
Ingrid Shan
California Institute of Technology
Micro-Architected Metallic Lattices for Lunar Dust Mitigation
Pascal Spino
Massachusetts Institute of Technology
Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
Benjamin Stern
Northwestern University, Chicago
A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
Titus Szobody
William Marsh Rice University
Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
Seneca Velling
California Institute of Technology
Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
Zhuochen Wang
Georgia Institute of Technology
Optimal Covariance Steering on Lie Groups for Precision Powered Descent
Stanley Wang
Stanford University
Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
Thomas Westenhofer
University of California, Irvine
Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
Andrew Witty
Purdue University
Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
Jonathan Wrieden
University of Maryland, College Park
A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
Jasen Zion
California Institute of Technology
Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Space Technology Research Grants
NASA Space Technology Graduate Research Opportunities (NSTGRO)
Technology
Share
Details
Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
Space Technology Research Grants Space Technology Mission Directorate View the full article
-
By NASA
Ames Science Directorate’s Stars of the Month: September 2025
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Earth Science Star: Taejin Park
Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
Space Science and Astrobiology Star: Lydia Schweitzer
Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
Space Science and Astrobiology Star: Rachel Morgan
Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A ship plows through rough seas in the Bering Sea in the aftermath of Typhoon Tip, one of the largest hurricanes on record. The Sentinel-6B satellite will provide data crucial to forecasting sea states, information that can help ships avoid danger. CC BY 2.0 NOAA/Commander Richard Behn Sea surface height data from the Sentinel-6B satellite, led by NASA and ESA, will help with the development of marine weather forecasts, alerting ships to possible dangers.
Because most global trade travels by ship, accurate, timely ocean forecasts are essential. These forecasts provide crucial information about storms, high winds, and rough water, and they depend on measurements provided by instruments in the ocean and by satellites including Sentinel-6B, a joint mission led by NASA and ESA (European Space Agency) that will provide essential sea level and other ocean data after it launches this November.
The satellite will eventually take over from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Both satellites have an altimeter instrument that measures sea levels, wind speeds, and wave heights, among other characteristics, which meteorologists feed into models that produce marine weather forecasts. Those forecasts provide information on the state of the ocean as well as the changing locations of large currents like the Gulf Stream. Dangerous conditions can result when waves interact with such currents, putting ships at risk.
“Building on NASA’s long legacy of satellite altimetry data and its real-world impact on shipping operations, Sentinel-6B will soon take on the vital task of improving ocean and weather forecasts to help keep ships, their crews, and cargo safe”, said Nadya Vinogradova Shiffer, lead program scientist at NASA Headquarters in Washington.
Sentinel-6 Michael Freilich and Sentinel-6B are part of the Sentinel-6/Jason-CS (Continuity of Service) mission, the latest in a series of ocean-observing radar altimetry missions that have monitored Earth’s changing seas since the early 1990s. Sentinel-6/Jason-CS is a collaboration between NASA, ESA, the European Union, EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites), and NOAA (U.S. National Oceanic and Atmospheric Administration). The European Commission provided funding support, and the French space agency CNES (Centre National d’Études Spatiales) contributed technical support.
Keeping current
“The ocean is getting busier, but it’s also getting more dangerous,” said Avichal Mehra, deputy director of the Ocean Prediction Center at the National Weather Service in College Park, Maryland. He and his colleagues produce marine weather forecasts using data from ocean-based instruments as well as complementary measurements from five satellites, including Sentinel-6 Michael Freilich. Among those measurements: sea level, wave height, and wind speed. The forecasters derive the location of large currents from changes in sea level.
One of the planet’s major currents, the Gulf Stream is located off the southeastern coast of the United States, but its exact position varies. “Ships will actually change course depending on where the Gulf Stream is and the direction of the waves,” said Mehra. “There have been instances where, in calm conditions, waves interacting with the Gulf Stream have caused damage or the loss of cargo containers on ships.”
Large, warm currents like the Gulf Stream can have relatively sharp boundaries since they are generally higher than their surroundings. Water expands as it warms, so warm seawater is taller than cooler water. If waves interact with these currents in a certain way, seas can become extremely rough, presenting a hazard to even the largest ships.
“Satellite altimeters are the only reliable measurement we have of where these big currents can be,” said Deirdre Byrne, sea surface height team lead at NOAA in College Park.
There are hundreds of floating sensors scattered about the ocean that could pick up parts of where such currents are located, but these instruments are widely dispersed and limited in the area they measure at any one time. Satellites like Sentinel-6B offer greater spatial coverage, measuring areas that aren’t regularly monitored and providing essential information for the forecasts that ships need.
Consistency is key
Sentinel-6B won’t just help marine weather forecasts through its near-real-time data, though. It will also extend a long-term dataset featuring more than 30 years of sea level measurements, just as Sentinel-6 Michael Freilich does today.
“Since 1992, we have launched a series of satellites that have provided consistent sea level observations from the same orbit in space. This continuity allows each new mission to be calibrated against its predecessors, providing measurements with centimeter-level accuracy that don’t drift over time,” said Severine Fournier, Sentinel-6B deputy project scientist at NASA’s Jet Propulsion Laboratory in Southern California.
This long-running, repeated measurement has turned this dataset into the gold standard sea level measurement from space — a reference against which data from other sea level satellites is checked. It also serves as a baseline, giving forecasters a way to tell what ocean conditions have looked like over time and how they are changing now. “This kind of data can’t be easily replaced,” said Mehra.
More about Sentinel-6B
Sentinel-6/Jason-CS was jointly developed by ESA, EUMETSAT, NASA, and NOAA, with funding support from the European Commission and technical support from CNES.
A division of Caltech in Pasadena, JPL contributed three science instruments for each Sentinel-6 satellite: the Advanced Microwave Radiometer, the Global Navigation Satellite System – Radio Occultation, and the Laser Retroreflector Array. NASA is also contributing launch services, ground systems supporting operation of the NASA science instruments, the science data processors for two of these instruments, and support for the U.S. members of the international Ocean Surface Topography and Sentinel-6 science teams.
For more about Sentinel-6/Jason-CS, visit:
https://sealevel.jpl.nasa.gov/missions/jason-cs-sentinel-6
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-491-1943 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-116
Share
Details
Last Updated Sep 11, 2025 Related Terms
Sentinel-6B Jason-CS (Continuity of Service) / Sentinel-6 Jet Propulsion Laboratory Oceans Weather and Atmospheric Dynamics Explore More
6 min read NASA Marsquake Data Reveals Lumpy Nature of Red Planet’s Interior
Article 2 weeks ago 4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability
Article 3 weeks ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.