Jump to content

Recommended Posts

  • Publishers
Posted
12 Min Read

NASA’s Hurricane Science, Tech, Data Help American Communities

View from space shows a massive Hurricane Milton with a well-defined eye and spiral cloud bands over the ocean.
Hurricane Milton swirls over the ocean in this view from the International Space Station.
Credits:
ISS Astronaut/Earth Observatory
  • NASA supports hurricane preparedness and response by providing satellite data and science before, during, and after storms.
  • During hurricane season, NASA delivers timely flood maps, power outage insights, landslide risk assessments, and more to state and federal partners.
  • NASA tests innovative technologies, from AI models to mini satellites, to enhance how we monitor hurricanes and their impacts.
  • NASA’s long-term tracking of wind, ocean heat, and atmospheric moisture improves understanding of where hurricanes might form and intensify.

With the Atlantic hurricane season underway, NASA is again gearing up to produce cutting-edge research that strengthens the nation’s ability to prepare for and respond to severe weather. From satellite imagery of our planet to improved storm modeling, the agency’s work supports communities in anticipating and reducing the impacts of hurricanes.

In 2024, hurricanes including Helene and Milton showed NASA’s wide-ranging capabilities. As the storms approached the United States, the agency’s network of satellites and scientists swung into action. Within hours of landfall, NASA’s Disasters Response Coordination System was supplying emergency managers and others with flood maps, power outage assessments, and other crucial data.

“People might be surprised how deeply NASA is involved in hurricane science,” said Scott Braun, a research meteorologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We are not the agencies issuing forecasts or warnings, but our technologies and science are making fundamental contributions to how we understand, predict, and respond to these storms.”

Disaster Response Powered by NASA

When hurricanes strike, NASA’s Disasters Response Coordination System aids state and federal agencies, producing and sharing imagery and data, including the NASA Disasters Mapping Portal, which offers tools to assess storm damage.

One crucial tool is NASA’s Black Marble product suite, produced and maintained by NASA Goddard. Using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), researchers and others can map nighttime lights and detect power outages.

Unlike traditional outage maps, which often show only county-level data, NASA’s Black Marble can provide a more detailed view. It offers calibrated, daily observations, enabling high-confidence tracking of neighborhood-level impacts. Emergency response teams in Florida, for instance, have used this imagery to assess conditions near hazardous waste sites before heading into the field after a hurricane.


augusta_bmhd_20240831.jpg
augusta-bmhd-20240928.jpg
before
after

The state faced widespread power outages after winds from Hurricane Helene snapped trees, tore off roofs, and toppled power lines.

The night satellite image of the greater Augusta area shows gray dark city streets across most of the image with small pockets of orange to purple coloration that indicate lighting.
The state faced widespread power outages after winds from Hurricane Helene snapped trees, tore off roofs, and toppled power lines. View the full story
NASA Earth Observatory/Lauren Dauphin

The state faced widespread power outages after winds from Hurricane Helene snapped trees, tore off roofs, and toppled power lines.
The night satellite image of the greater Augusta area shows gray dark city streets across most of the image with small pockets of orange to purple coloration that indicate lighting.
The state faced widespread power outages after winds from Hurricane Helene snapped trees, tore off roofs, and toppled power lines. View the full story
NASA Earth Observatory/Lauren Dauphin

before

after

Scientists with NASA’s Black Marble processed data from VIIRS on the NOAA-NASA Suomi NPP satellite to show how power outages darkened Augusta, Georgia, before and after Hurricane Helene. View the full story


Other NASA technologies map flooding. Scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama used the European Space Agency’s Sentinel-1 synthetic aperture radar data and other data from the NASA/U.S. Geological Survey Landsat satellites and ESA’s Sentinel-2 to track flooding after multiple hurricanes in 2024, including Helene and Milton.

These maps were shared through the NASA Disasters Mapping Portal with state and federal emergency managers responding to storms’ impacts in Florida, North Carolina, South Carolina, and elsewhere.

“The ability to see floodwaters and landscape changes gives communities a critical edge during response and recovery,” said Shanna McClain, disasters program manager for NASA’s Earth Science Division at NASA headquarters in Washington. “It helps decision-makers act faster when every minute counts.”

Hurricanes don’t just knock out power or trigger flooding — they can also loosen mountains. After Hurricane Helene, NASA scientists partnered with USGS to tackle a different threat: landslides throughout the southern Appalachian Mountains. NASA’s Landslide Hazard Assessment for Situational Awareness tool, developed at NASA Goddard, can help spot landslide-prone areas by combining different troves of satellite data.

“The landslide model brings together a wide range of Earth science,” said Thomas Stanley, a research scientist at NASA Goddard. “It’s a real convergence of satellite observations — soil moisture, precipitation, elevation — each one adding a key piece to the puzzle.”

Map showing landslide hazards
NASA and USGS used rainfall data and modeling to estimate landslide hazards in the Appalachians following Hurricane Helene, highlighting high-risk zones across western North Carolina.
NASA/USGS

In the days during and after Helene, a NASA-USGS team adapted this model to incorporate ground-based rainfall measurements. “This collaboration proved crucial during the critical first days when lingering clouds prevented direct satellite imaging of landslides,” said Kate Allstadt, a research geophysicist at USGS. “Combining NASA and USGS landslide models guided aerial reconnaissance over four states and helped prioritize areas for detailed mapping.”

NASA Disasters Response coordinators also partnered with USGS to manually map likely landslide areas in North Carolina, South Carolina, and Virginia, using high-resolution satellite imagery. This partnership enabled early warnings to agencies such as the North Carolina Geological Survey about potential landslide zones before visual confirmation was possible.

Tracking Hurricanes in Near Real Time

As hurricanes gather strength over warm ocean waters, NASA’s satellites begin tracking them. One effort providing essential data on hurricanes is the Global Precipitation Measurement (GPM) mission, a collaboration between NASA and the Japan Aerospace Exploration Agency. Passing over storms once or twice per day, the GPM core satellite captures high-resolution data on rainfall intensity and distribution.

“The GPM mission gives us an inside look at where a storm is dropping the most rain and how intense it is,” said George Huffman, GPM project scientist at NASA Goddard. “That kind of information helps forecasters make better predictions and gives communities more time to prepare for flooding and dangerous conditions.”

Huffman’s team leads NASA’s IMERG (Integrated Multi-satellitE Retrievals for GPM) product, which combines GPM Core Observatory data with observations from other satellites to generate near real-time, global rainfall estimates every 30 minutes. For example, IMERG tracked the record-breaking rainfall that fell during Hurricane Harvey in 2017, when parts of Texas saw more than 50 inches of rain.

Satellite-based rainfall data can be especially vital when a big storm like Harvey or Helene knocks out ground-based rain measurements, Huffman said.

Watch Hurricane Harvey as it makes landfall in Texas and Louisiana in 2017. The visualization depicts precipitation measured by the GPM mission, highlighting record-shattering rainfall over Texas and Louisiana. Blue is frozen precipitation, while green to red is rainfall.
NASA’s Scientific Visualization Studio

NASA also is working to turn precipitation data into practical flood predictions. One such effort, led by NASA-funded hydrologist Ed Beighley at Northeastern University in Boston, merges rainfall estimates from the GPM mission with National Weather Service river discharge models and surface water mapping methods to identify areas likely to experience flooding.

During Hurricane Helene, his team provided early versions of these flood maps to the North Carolina Department of Health and Human Services.

“In some cases, like with Helene, we could see where disasters were likely to be declared just from the rainfall data — days before the disaster declarations were made official,” Beighley said. “That kind of near real-time information could really help counties and health departments prepare and coordinate response efforts.”

That same focus on improving early flood prediction was at the heart of NASA’s response to Hurricane Debby when it made landfall in Florida in August 2024. At NASA Marshall, the Short-term Prediction Research and Transition (SPoRT) team used its Land Information System to track soil moisture levels, crucial for understanding the potential for flooding.

The team’s Streamflow-AI model — a machine learning tool trained to predict how rivers respond to rainfall — also forecasted rising waters in small streams and creeks in Florida and the Carolinas.

“The streamflow tool is used pretty heavily by the National Weather Service now to help inform flood forecasts, which then filters down to evacuation orders,” said Patrick Duran, a NASA Marshall research scientist with SPoRT.

SPoRT’s Stream Flow AI showing the flooding potential for Swannanoa River in Asheville, North Carolina.
NASA SPoRT’s Streamflow-AI model shows the flooding potential for the Swannanoa River in Asheville, North Carolina, during and after Hurricane Helene.
NASA SPoRT

Reinventing the Tech That Sees Into Storms

NASA doesn’t just collect data on hurricanes or aid in their aftermath — it is redefining the technology we use to observe and understand them. This work is not only improving forecasts and warnings but also helping to fuel the growth of America’s commercial satellite industry.

Take NASA’s TROPICS mission. Short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats, TROPICS represents a fundamental shift in how we might monitor hurricanes from space. Rather than relying solely on intermittent passes by larger satellites, TROPICS uses a group of small, lower-cost satellites working in concert to provide more frequent observations of tropical storm systems — offering a complementary approach to storm monitoring.

During Hurricane Helene, the TROPICS satellites tracked the storm through nearly its entire life cycle, capturing data on its rapid intensification from a tropical depression to a powerful category 4 hurricane before landfall in Florida’s Big Bend region.

Each TROPICS satellite carries a microwave radiometer. Unlike optical sensors, this instrument can see through clouds, making it ideal for tracking storms. The TROPICS’ radiometers are tuned to detect temperature, moisture, and precipitation patterns inside hurricanes.

“The TROPICS mission is really good at providing images of the structure of a storm, showing how well defined the eye is, which is key for improving forecasting,” said William Blackwell, TROPICS principal investigator at MIT Lincoln Laboratory in Massachusetts.

NASA’s TROPICS mission monitored Hurricane Helene throughout its life cycle. This visualization shows how the tropical depression rapidly intensified into a category 4 hurricane before hitting Florida and then moving inland.
NASA’s Scientific Visualization Studio

Tomorrow.io, an American weather company, is using radiometer technology derived from TROPICS as it develops tools for commercial weather forecasting. The company also is working to adapt radar technology first tested on NASA’s RainCube mission.

RainCube, a small satellite about the size of a shoebox developed by NASA’s Jet Propulsion Laboratory in Southern California, operated from 2018 to 2020. It used radar to study precipitation, sending signals toward Earth and analyzing how long they took to bounce back, and how strong they were after reflecting off raindrops, snowflakes, and cloud ice.

Full-scale satellites have been using radar technology to make that kind of measurement for years. “The key thing with RainCube wasn’t bringing in new science,” said Simone Tanelli, RainCube principal scientist at JPL. “Instead, it was showing that we could give you similar data with a box that’s roughly 100 times smaller in volume than a full-size satellite.”

NASA also tests how other small, lower-cost instruments could transform how we monitor tropical storms. Two such tools — COWVR, short for Compact Ocean Wind Vector Radiometer measures ocean surface winds, and TEMPEST, short for Temporal Experiment for Storms and Tropical Systems tracks atmospheric water vapor — were launched to the International Space Station in 2021.

Using technology and designs from JPL and other NASA teams, TEMPEST and COWVR already are proving their value. Their data has been used by the U.S. Joint Typhoon Warning Center to help track and forecast powerful storms, such as Tropical Cyclone Mandous in December 2022.

This image of Tropical Cyclone Mandous, created with COWVR and TEMPEST data, shows the storm's structure and intensity as it nears southern India in December 2022.
Data from the COWVR and TEMPEST instruments aboard the ISS was used to create this image of Tropical Cyclone Mandous, which forecasters used to understand the December 2022 storm’s intensity and predict its path toward southern India.
U.S. Joint Typhoon Warning Center/U.S. Naval Research Laboratory

NASA researchers also are investigating lightning, which has emerged as a key clue in predicting rapid storm intensification, a dangerous phase of the hurricane life cycle that is one of the most difficult aspects of hurricane forecasting. Spikes in lightning activity, especially in the eyewall, can be an early sign that a storm is about to strengthen quickly.

The agency’s SPoRT project is researching how lightning data from the Geostationary Lightning Mapper can improve hurricane forecasting. This sensor provides a nearly continuous view of lightning activity over oceans and in remote land regions that have fewer weather observations. The instrument rides aboard NOAA’s (National Oceanic and Atmospheric Administration) GOES weather satellites.

“By studying the size and energy of lightning flashes inside hurricanes, we’re learning how they might signal whether a storm is about to intensify or weaken,” said Duran. “It’s an evolving area of research with a lot of potential.”

During Hurricane Helene, SPoRT’s lightning analyses revealed a burst of strong, frequent flashes in the eyewall just before the storm surged from category 2 to category 4 intensity. That’s exactly the kind of signal researchers hope to detect more reliably in the future.

Animated sequence showing repeated, bright lightning flashes in the circular eyewall of Hurricane Helene, as viewed from space by the Geostationary Lightning Mapper. The flashes intensify and become more frequent, illustrating the storm’s rapid strengthening from Category 2 to Category 4 shortly before landfall.
Bright, large lightning flashes seen in Hurricane Helene’s eyewall, captured by NASA SPoRT’s Geostationary Lightning Mapper viewer, indicate the storm’s rapid intensification from category 2 to 4 just hours before landfall.
NASA SPoRT

NASA frequently uses its airplanes to test new hurricane tech, too. In one recent example, scientists from NASA’s Langley Research Center in Hampton, Virginia, flew a cutting-edge 3-D Doppler wind lidar system across the United States, including making passes through the edges of Hurricane Helene. The instrument is designed to capture high-resolution wind data that can improve predictions of rapidly evolving storms, such as hurricanes and severe thunderstorms, where accurate wind observations are essential, but often lacking.

Braun compared these multiple data streams — from TROPICS, GPM, and other instruments — to medical imaging. “Think about how doctors use different types of scans like X-rays, MRIs, and ultrasound to understand what’s happening inside a patient’s body,” he said. “We’re doing something similar with hurricanes. Each system gives us a different view of the storm’s internal structure and environment, with the goal of improving forecasts.”

Watching For Hurricane Warning Signs

Long before a hurricane takes shape, NASA satellites are already scanning the global ocean and atmosphere, closely tracking the conditions that give rise to powerful storms. One of the most important indicators is sea surface temperature.

NASA combines data from multiple satellites and sensors — such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS — to produce sea surface temperature maps like JPL’s Multi-scale Ultra-high Resolution Sea Surface Temperature product and SPoRT’s Sea Surface Temperature Composite product. These global maps, updated daily, support users such as the National Weather Service.

“Having high-resolution, reliable sources of sea surface temperature data is extremely useful,” said Brian McNoldy of the University of Miami, who studies hurricanes. “From one day to the next, these datasets help identify which parts of the tropical Atlantic are above or below average. That information lets forecasters anticipate where storms might strengthen or weaken.”

The image of the gulf coast, land in gray and ocean with a temperature gradient overlay with current cloud coverage shows Hurricane Milton. The ocean temperatures overlay shows all Gulf of Mexico waters in a shade of red. The range of color on the warm side of the spectrum ranges from pale yellow at 21 degrees C to a dark, near black shade of red, at 32 degrees C or more.
Hurricane Milton rapidly intensified to category 5 strength over warm gulf waters. View the full story
NASA Earth Observatory/Wanmei Liang

Ocean surface temperatures are only part of the story. NASA also monitors sea surface height with missions such as Sentinel-6 Michael Freilich and SWOT (Surface Water and Ocean Topography), using these measurements as indicators for deeper ocean heat content, a key source of energy fueling hurricanes.

Other NASA-built satellites and sensors measure atmospheric moisture, ocean surface winds, and atmospheric stability, all essential factors influencing whether a storm strengthens or dissipates.

NASA also uses its aircraft to study early storm development up close. In 2022, the agency’s Convective Processes Experiment-Cabo Verde  airborne campaign flew off the northwest coast of Africa to study weather systems that can give rise to hurricanes.

The team focused in part on African easterly waves — swirling disturbances in the atmosphere that often become the seeds of Atlantic storms. One of the waves they observed later developed into Tropical Storm Hermine. The mission also gathered data that same year just before hurricanes Fiona and Ian formed.

“The strength of NASA’s pre-storm monitoring lies in both the breadth of measurements we take and the decades-long consistency behind them,” said Will McCarty, manager of weather programs at NASA Headquarters.

“By combining data on sea surface temperature, ocean heat content, wind patterns, and more, we can see early on when conditions align dangerously — often before a storm visibly forms,” McCarty said. “It’s how we turn early warning into early action.”

About the Author

Emily DeMarco

Emily DeMarco

Share

Details

Last Updated
Jun 13, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      Honolulu is pictured here beside a calm sea in 2017. A JPL technology recently detected and confirmed a tsunami up to 45 minutes prior to detection by tide gauges in Hawaii, and it estimated the speed of the wave to be over 580 miles per hour (260 meters per second) near the coast.NASA/JPL-Caltech A massive earthquake and subsequent tsunami off Russia in late July tested an experimental detection system that had deployed a critical component just the day before.
      A recent tsunami triggered by a magnitude 8.8 earthquake off Russia’s Kamchatka Peninsula sent pressure waves to the upper layer of the atmosphere, NASA scientists have reported. While the tsunami did not wreak widespread damage, it was an early test for a detection system being developed at the agency’s Jet Propulsion Laboratory in Southern California.
      Called GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), the experimental technology “functioned to its full extent,” said Camille Martire, one of its developers at JPL. The system flagged distortions in the atmosphere and issued notifications to subscribed subject matter experts in as little as 20 minutes after the quake. It confirmed signs of the approaching tsunami about 30 to 40 minutes before waves made landfall in Hawaii and sites across the Pacific on July 29 (local time).
      “Those extra minutes of knowing something is coming could make a real difference when it comes to warning communities in the path,” said JPL scientist Siddharth Krishnamoorthy.
      Near-real-time outputs from GUARDIAN must be interpreted by experts trained to identify the signs of tsunamis. But already it’s one of the fastest monitoring tools of its kind: Within about 10 minutes of receiving data, it can produce a snapshot of a tsunami’s rumble reaching the upper atmosphere.
      The dots in this graph indicate wave disturbances in the ionosphere as measured be-tween ground stations and navigation satellites. The initial spike shows the acoustic wave coming from the epicenter of the July 29 quake that caused the tsunami; the red squiggle shows the gravity wave the tsunami generated.NASA/JPL-Caltech The goal of GUARDIAN is to augment existing early warning systems. A key question after a major undersea earthquake is whether a tsunami was generated. Today, forecasters use seismic data as a proxy to predict if and where a tsunami could occur, and they rely on sea-based instruments to confirm that a tsunami is passing by. Deep-ocean pressure sensors remain the gold standard when it comes to sizing up waves, but they are expensive and sparse in locations.
      “NASA’s GUARDIAN can help fill the gaps,” said Christopher Moore, director of the National Oceanic and Atmospheric Administration Center for Tsunami Research. “It provides one more piece of information, one more valuable data point, that can help us determine, yes, we need to make the call to evacuate.”
      Moore noted that GUARDIAN adds a unique perspective: It’s able to sense sea surface motion from high above Earth, globally and in near-real-time.
      Bill Fry, chair of the United Nations technical working group responsible for tsunami early warning in the Pacific, said GUARDIAN is part of a technological “paradigm shift.” By directly observing ocean dynamics from space, “GUARDIAN is absolutely something that we in the early warning community are looking for to help underpin next generation forecasting.”
      How GUARDIAN works
      GUARDIAN takes advantage of tsunami physics. During a tsunami, many square miles of the ocean surface can rise and fall nearly in unison. This displaces a significant amount of air above it, sending low-frequency sound and gravity waves speeding upwards toward space. The waves interact with the charged particles of the upper atmosphere — the ionosphere — where they slightly distort the radio signals coming down to scientific ground stations of GPS and other positioning and timing satellites. These satellites are known collectively as the Global Navigation Satellite System (GNSS).
      While GNSS processing methods on Earth correct for such distortions, GUARDIAN uses them as clues.
      SWOT Satellite Measures Pacific Tsunami The software scours a trove of data transmitted to more than 350 continuously operating GNSS ground stations around the world. It can potentially identify evidence of a tsunami up to about 745 miles (1,200 kilometers) from a given station. In ideal situations, vulnerable coastal communities near a GNSS station could know when a tsunami was heading their way and authorities would have as much as 1 hour and 20 minutes to evacuate the low-lying areas, thereby saving countless lives and property.
      Key to this effort is the network of GNSS stations around the world supported by NASA’s Space Geodesy Project and Global GNSS Network, as well as JPL’s Global Differential GPS network that transmits the data in real time.
      The Kamchatka event offered a timely case study for GUARDIAN. A day before the quake off Russia’s northeast coast, the team had deployed two new elements that were years in the making: an artificial intelligence to mine signals of interest and an accompanying prototype messaging system.
      Both were put to the test when one of the strongest earthquakes ever recorded spawned a tsunami traveling hundreds of miles per hour across the Pacific Ocean. Having been trained to spot the kinds of atmospheric distortions caused by a tsunami, GUARDIAN flagged the signals for human review and notified subscribed subject matter experts.
      Notably, tsunamis are most often caused by large undersea earthquakes, but not always. Volcanic eruptions, underwater landslides, and certain weather conditions in some geographic locations can all produce dangerous waves. An advantage of GUARDIAN is that it doesn’t require information on what caused a tsunami; rather, it can detect that one was generated and then can alert the authorities to help minimize the loss of life and property. 
      While there’s no silver bullet to stop a tsunami from making landfall, “GUARDIAN has real potential to help by providing open access to this data,” said Adrienne Moseley, co-director of the Joint Australian Tsunami Warning Centre. “Tsunamis don’t respect national boundaries. We need to be able to share data around the whole region to be able to make assessments about the threat for all exposed coastlines.”
      To learn more about GUARDIAN, visit:
      https://guardian.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-117
      Explore More
      5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 21 hours ago 13 min read The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA,…
      Article 2 days ago 21 min read Summary of the 11th ABoVE Science Team Meeting
      Introduction The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...