Members Can Post Anonymously On This Site
NASA’s Roman to Peer Into Cosmic ‘Lenses’ to Better Define Dark Matter
-
Similar Topics
-
By NASA
Explore This Section Science Courses & Curriculums for… STEM Educators Are Bringing… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront of Science, Technology, Engineering, & Mathematics (STEM) education, play a key role in the advancement of STEM learning ecosystems and citizen science.
On June 24-25, 2025 – despite a major east coast heat wave – twenty-four educators from eight school districts in the Hampton Roads region of southeastern Virginia (Newport News, Hampton City, Virginia Beach City, Isle of Wight County, Poquoson City, Norfolk, York County, and Suffolk Public Schools) converged at the National Institute of Aerospace (NIA) in Hampton, VA for a professional development workshop led by experts from NASA Langley Research Center and the NASA Science Activation program’s NIA-led NASA eClips team. Developed in collaboration with another NASA Science Activation team, GLOBE (Global Learning and Observations to Benefit the Environment) Mission Earth, and with support from the Coastal Virginia STEM Hub (COVA STEM) – a “STEM learning ecosystem targeting pre-K to adult residents in Coastal Virginia” – this two-day training, also provided comprehensive resources, including lesson plans, pacing guides, classroom activities, and books, all designed for integration into Hampton Roads classrooms.
The NASA Langley team led workshop participants through a training about GLOBE, a program dedicated to advancing Earth System science through data collected by volunteer members of the public, also known as ‘citizen scientists’. GLOBE invites educators, students, and members of the public worldwide (regardless of citizenship) to collect and submit cloud, surface temperature, and land cover observations using the GLOBE Observer app – a real-time data collection tool available right on their smartphones. These observations are then used to help address scientific questions at local, regional, and global scales. Through this training, the educators participated in K-20 classroom-friendly sample lessons, hands-on activities, and exploring the GLOBE Observer app, ultimately qualifying them as GLOBE Certified Educators. Earth System science lessons, activities, and information on how to download the GLOBE Observer citizen science app are available on the GLOBE website. Similarly, NASA eClips, which focuses on increasing STEM literacy in K-12 students, provided educators with free, valuable, standards-based classroom resources such as educator guides, informational videos, engineering design packets, and hands-on activities, which are available to educators and students alike on the NASA eClips’ website. Throughout the training, educators collaborated in grade-level groups, brainstorming new ways to integrate these standards-based NASA science resources.
One educator envisioned incorporating GLOBE’s cloud resources and supportive NASA eClips videos into her energy budget unit. Others explored modifying a heat-lamp experiment to include humidity and heat capacity. One teacher enthusiastically noted in response to a GLOBE urban heat island lesson plan, “The hands-on elements are going to be really great deliverables!” The creative energy and passion for education were palpable.
The dedication of both NIA and NASA Langley to education and local community support was evident. This professional learning experience offered educators immediately-applicable classroom activities and fostered connections among NASA science, NASA eClips, the GLOBE Program, and fellow educators across district lines. One educator highlighted the value of these networking opportunities, stating, “I do love that we’re able to collaborate with our colleagues so we can plan for our future units during the school year”. Another participant commented, “This is a great program…I am going to start embedding [this] in our curriculum.”
GME (supported by NASA under cooperative agreement award number NNX16AC54A) and NASA eClips (supported by NASA under cooperative agreement award number NNX16AB91A) are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
GLOBE educator Marilé Colón Robles demonstrates a kinesthetic activity. Share
Details
Last Updated Aug 04, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
Courses & Curriculums for Professionals Earth Science Opportunities For Educators to Get Involved Science Activation Explore More
4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Article
3 days ago
3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day
Article
2 weeks ago
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Before astronauts venture around the Moon on Artemis II, the agency’s first crewed mission to the Moon since Apollo, Mark Cavanaugh is helping make sure the Orion spacecraft is safe and space-ready for the journey ahead.
As an Orion integration lead at NASA’s Johnson Space Center in Houston, he ensures the spacecraft’s critical systems— in both the U.S.-built crew module and European-built service module—come together safely and seamlessly.
Mark Cavanaugh stands in front of a mockup of the Orion spacecraft inside the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz With nearly a decade of experience at NASA, Cavanaugh currently works within the Orion Crew and Service Module Office at Johnson. He oversees the technical integration of the European Service Module, which provides power, propulsion, and life support to Orion during Artemis missions to the Moon. His work includes aligning and verifying essential systems to keeping the crew alive, including oxygen, nitrogen, water storage, temperature regulation, and spacecraft structures.
In addition to his integration work, Cavanaugh is an Orion Mission Evaluation Room (MER) manager. The MER is the engineering nerve center during Artemis flights, responsible for real-time monitoring of the Orion spacecraft and real-time decision-making. From prelaunch to splashdown, Cavanaugh will lead a team of engineers who track vehicle health and status, troubleshoot anomalies, and communicate directly with the flight director to ensure the mission remains safe and on track.
Mark Cavanaugh supports an Artemis I launch attempt from the Passive Thermal Control System console on Aug. 29, 2022, in the Orion Mission Evaluation Room at NASA’s Johnson Space Center.NASA/Josh Valcarcel Cavanaugh’s passion for space exploration began early. “I’ve wanted to be an aerospace engineer since I was six years old,” he said. “My uncle, who is also an aerospace engineer, used to take me to wind tunnel tests and flight museums as a kid.”
That passion only deepened after a fifth-grade trip from Philadelphia to Houston with his grandfather. “My dream of working at NASA Johnson started when I visited the center for the first time,” he said. “Going from being a fifth grader riding the tram on the tour to contributing to the great work done at Johnson has been truly incredible.”
Turning that childhood dream into reality did not come with a straight path. Cavanaugh graduated from Pennsylvania State University in 2011, the same year NASA’s Space Shuttle Program ended. With jobs in the space industry in short supply, he took a position with Boeing in Houston, working on the International Space Station’s Passive Thermal Control System. He later supported thermal teams for the Artemis Moon rocket called the Space Launch System, and the Starliner spacecraft that flew astronauts Butch Wilmore and Suni Williams during their Boeing Crew Flight Test mission, before a mentor flagged a NASA job posting that turned out to be the perfect fit.
He joined NASA as the deputy system manager for Orion’s Passive Thermal Control System, eventually stepping into his current leadership role on the broader Orion integration team. “I’ve been very lucky to work with some of the best and most supportive teammates you can imagine,” he said.
Mark Cavanaugh with his mother, Jennifer, in front of the Artemis I Orion spacecraft following the thermal vacuum test at the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Cavanaugh says collaboration and empathy were key to solving challenges along the way. “I’ve learned to look at things from the other person’s perspective,” he said. “We’re all working toward the same incredible goal, even if we don’t always agree. That mindset helps keep things constructive and prevents misunderstandings.”
He also emphasizes the importance of creative problem-solving. “For me, overcoming technical challenges comes down to seeking different perspectives, questioning assumptions, and not being afraid to try something new—even if it sounds a little ridiculous at first.”
Mark Cavanaugh riding his motorcycle on the Circuit of the Americas track in Austin, Texas. Outside of work, Cavanaugh fuels his love of speed and precision by riding one of his three motorcycles. He has even taken laps at the Circuit of the Americas track in Austin, Texas.
When he is not on the track or in the control room, Cavanaugh gives back through student outreach. “The thing I always stress when I talk to students is that nothing is impossible,” he said. “I never thought I’d get to work in the space industry, let alone at NASA. But I stayed open to opportunities—even the ones that didn’t match what I originally imagined for myself.”
Explore More
5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
Article 3 weeks ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room
Article 4 weeks ago 2 min read I Am Artemis: Joe Pavicic
Article 4 weeks ago View the full article
-
By NASA
Technicians have successfully installed two sunshields onto NASA’s Nancy Grace Roman Space Telescope’s inner segment. Along with the observatory’s Solar Array Sun Shield and Deployable Aperture Cover, the panels (together called the Lower Instrument Sun Shade), will play a critical role in keeping Roman’s instruments cool and stable as the mission explores the infrared universe.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows technicians installing two sunshields onto NASA's nearly complete Nancy Grace Roman Space Telescope on July 17. The large yet lightweight panels will block sunlight, keeping Roman’s instruments cool and stable as the mission explores the infrared universe.Credit: NASA/Sophia Roberts The team is on track to join Roman’s outer and inner assemblies this fall to complete the full observatory, which can then undergo further prelaunch testing.
“This shield is like an extremely strong sunblock for Roman’s sensitive instruments, protecting them from heat and light from the Sun that would otherwise overwhelm our ability to detect faint signals from space,” said Matthew Stephens, an aerospace engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The sunshade, which was designed and engineered at NASA Goddard, is essentially an extension of Roman’s solar panels, except without solar cells. Each sunshade flap is roughly the size of a garage door — about 7 by 7 feet (2.1 by 2.1 meters) — and 3 inches (7.6 centimeters) thick.
“They’re basically giant aluminum sandwiches, with metal sheets as thin as a credit card on the top and bottom and the central portion made up of a honeycomb structure,” said Conrad Mason, an aerospace engineer at NASA Goddard.
This design makes the panels lightweight yet stiff, and the material helps limit heat transfer from the side facing the Sun to the back—no small feat considering the front will be hot enough to boil water (up to 216 degrees Fahrenheit, or 102 degrees Celsius) while the back will be much colder than Antarctica’s harshest winter (minus 211 Fahrenheit, or minus 135 Celsius). A specialized polymer film blanket will wrap around each panel to temper the heat, with 17 layers on the Sun side and one on the shaded side.
The sunshade will be stowed and gently deploy around an hour after launch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
In this time-lapse video, technicians manually deploy the Lower Instrument Sun Shield for NASA's Nancy Grace Roman Space Telescope. The test helps verify the panels will operate as designed in space.NASA/Sophia Roberts “The deploying mechanisms have dampers that work like soft-close hinges for drawers or cabinets, so the panels won’t slam open and rattle the observatory,” Stephens said. “They each take about two minutes to move into their final positions. This is the very first system that Roman will deploy in space after the spacecraft separates from the launch vehicle.”
Now completely assembled, Roman’s inner segment is slated to undergo a 70-day thermal vacuum test next. Engineers and scientists will test the full functionality of the spacecraft, telescope, and instruments under simulated space conditions. Following the test, the sunshade will be temporarily removed while the team joins Roman’s outer and inner assemblies, and then reattached to complete the observatory. The mission remains on track for launch no later than May 2027 with the team aiming for as early as fall 2026.
Click here to virtually tour an interactive version of the telescope Download high-resolution video and images from NASA’s Scientific Visualization Studio
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 31, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Galaxies Goddard Space Flight Center Nebulae Sensing the Universe & Multimessenger Astronomy Stars The Universe Explore More
7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
Article 2 weeks ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
Article 3 weeks ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago View the full article
-
By NASA
2 min read
Bring NASA Science into Your Library!
Calling all librarians! NASA sponsors dozens of research projects that need help from you and the people in your community. These projects invite everyone who’s interested to collaborate with scientists, investigating mysteries from how star systems form to how our planet sustains life. You can help by making observations with your cell phone or by studying fresh data on your laptop from spacecraft like the James Webb Space Telescope. You might discover a near-Earth asteroid or a new food option for astronauts. Participants learn new skills and meet scientists and other people around the world with similar interests.
Interested in sharing these opportunities with your patrons? Join us on August 26, 2025 at 1 p.m. EST for a 1-hour online information session. A librarian and a participatory science professional will provide you with a NASA Citizen Science Librarian Starter Kit and answer all your questions. The kit includes everything you need to host a NASA Science Program for patrons of all ages.
Editable poster to advertise event Event prep guide (for the host and for the space) Community connection ideas Editable event agenda Handout for participants Scan the QR code above or go to https://shorturl.at/tKfTt to register for the session.
Kara Reiman, Librarian and Educator (Left) and Sarah Kirn, Participatory Science Strategist, NASA (Right) Share
Details
Last Updated Jul 21, 2025 Related Terms
Citizen Science Explore More
3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article
5 days ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
2 weeks ago
2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars
Article
4 weeks ago
View the full article
-
By NASA
Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.
This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.
“Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.
Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.
Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Credit: NASA, ESA, CSA, and STScI In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.
Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.
“Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”
But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.
That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.
“By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.
“With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”
Hidden Gems
Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.
Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.
The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.
Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.
NASA’s Roman Space Telescope will survey the same areas of the sky every few days following its launch in May 2027. Researchers will mine these data to identify kilonovae – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI) That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.
Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.
They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.
So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.
“I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”
A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.
“Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”
For more information about the Roman Space Telescope visit www.nasa.gov/roman.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms
Nancy Grace Roman Space Telescope Astrophysics Black Holes Dark Energy Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Science & Research Stars Supernovae The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
Article 5 days ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.