Members Can Post Anonymously On This Site
NASA’s Roman to Peer Into Cosmic ‘Lenses’ to Better Define Dark Matter
-
Similar Topics
-
By NASA
Attendees line up to enter the theater for a screening of the new NASA+ documentary “Cosmic Dawn: The Untold Story of the James Webb Space Telescope,” Wednesday, June 11, 2025, at the Greenbelt Cinema in Greenbelt, Maryland. Featuring never-before-seen footage, Cosmic Dawn offers an unprecedented glimpse into the assembly, testing, and launch of NASA’s James Webb Space Telescope.NASA/Joel Kowsky Attendees line up to enter the theater for a screening of the new NASA+ documentary “Cosmic Dawn: The Untold Story of the James Webb Space Telescope,” Wednesday, June 11, 2025, at the Greenbelt Cinema in Greenbelt, Maryland. Following the screening, Jacob Pinter, host of NASA’s Curious Universe podcast, led a discussion with Sophia Roberts, a NASA video producer who documented the Webb project, and Paul Geithner, former deputy project manager for Webb.
Featuring never-before-seen footage, Cosmic Dawn offers an unprecedented glimpse into the assembly, testing, and launch of NASA’s James Webb Space Telescope.
Watch the documentary.
Image credit: NASA/Joel Kowsky
View the full article
-
By NASA
5 min read
NASA Launching Rockets Into Radio-Disrupting Clouds
NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
“There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
A Mystery at the Equator
Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
“We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
Taking to the Skies
To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
“Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
By Miles Hatfield
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 12, 2025 Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
9 min read The Earth Observer Editor’s Corner: April–June 2025
Article
22 hours ago
5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation
Article
22 hours ago
6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
Article
2 days ago
Keep Exploring Discover Related Topics
Sounding Rockets
Ionosphere, Thermosphere & Mesosphere
Space Weather
Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…
Solar System
View the full article
-
By NASA
What does it take to gaze through time to our universe’s very first stars and galaxies?
NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.
Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
“At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field the deepest and sharpest infrared images of the universe that the world had seen.
Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
Sophia roberts
NASA Video Producer
NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
“Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
To achieve this goal, NASA and its partners faced unprecedented hurdles.
Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
“There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
“The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
Learn more at nasa.gov/cosmicdawn By Laine Havens,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Katie Konans,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 11, 2025 Related Terms
James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation
White diamonds show the locations of 20 of the 83 young, low-mass, starburst galaxies found in infrared images of the giant galaxy cluster Abell 2744. Full image and description shown below. Credits:
NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 Astronomers using data from NASA’s James Webb Space Telescope have identified dozens of small galaxies that played a starring role in a cosmic makeover that transformed the early universe into the one we know today.
“When it comes to producing ultraviolet light, these small galaxies punch well above their weight,” said Isak Wold, an assistant research scientist at Catholic University of America in Washington and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Our analysis of these tiny but mighty galaxies is 10 times more sensitive than previous studies, and shows they existed in sufficient numbers and packed enough ultraviolet power to drive this cosmic renovation.”
Wold discussed his findings Wednesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska. The study took advantage of existing imaging collected by Webb’s NIRCam (Near-Infrared Camera) instrument, as well as new observations made with its NIRSpec (Near-Infrared Spectrograph) instrument.
Image A: Webb search finds dozens of tiny, young star-forming galaxies
Symbols mark the locations of young, low-mass galaxies bursting with new stars when the universe was about 800 million years old. Using a filter sensitive to such galaxies, NASA’s James Webb Space Telescope imaged them with the help of a natural gravitational lens created by the massive galaxy cluster Abell 2744. In all, 83 young galaxies were found, but only the 20 shown here (white diamonds) were selected for deeper study. The inset zooms into one of the galaxies.
Download high-resolution images from NASA’s Scientific Visualization Studio NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 The tiny galaxies were discovered by Wold and his Goddard colleagues, Sangeeta Malhotra and James Rhoads, by sifting through Webb images captured as part of the UNCOVER (Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization) observing program, led by Rachel Bezanson at the University of Pittsburgh in Pennsylvania.
The project mapped a giant galaxy cluster known as Abell 2744, nicknamed Pandora’s cluster, located about 4 billion light-years away in the southern constellation Sculptor. The cluster’s mass forms a gravitational lens that magnifies distant sources, adding to Webb’s already considerable reach.
Image B: Galaxy cluster helps reveal young, low-mass galaxies bursting with stars
White diamonds show the locations of 20 of the 83 young, low-mass, starburst galaxies found in infrared images of the giant galaxy cluster Abell 2744. This composite incorporates images taken through three NIRCam filters (F200W as blue, F410M as green, and F444W as red). The F410M filter is highly sensitive to light emitted by doubly ionized oxygen — oxygen atoms that have been stripped of two electrons — at a time when reionization was well underway. Emitted as green light, the glow was stretched into the infrared as it traversed the expanding universe over billions of years. The cluster’s mass acts as a natural magnifying glass, allowing astronomers to see these tiny galaxies as they were when the universe was about 800 million years old. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 For much of its first billion years, the universe was immersed in a fog of neutral hydrogen gas. Today, this gas is ionized — stripped of its electrons. Astronomers, who refer to this transformation as reionization, have long wondered which types of objects were most responsible: big galaxies, small galaxies, or supermassive black holes in active galaxies. As one of its main goals, NASA’s Webb was specifically designed to address key questions about this major transition in the history of the universe.
Recent studies have shown that small galaxies undergoing vigorous star formation could have played an outsized role. Such galaxies are rare today, making up only about 1% of those around us. But they were abundant when the universe was about 800 million years old, an epoch astronomers refer to as redshift 7, when reionization was well underway.
The team searched for small galaxies of the right cosmic age that showed signs of extreme star formation, called starbursts, in NIRCam images of the cluster.
“Low-mass galaxies gather less neutral hydrogen gas around them, which makes it easier for ionizing ultraviolet light to escape,” Rhoads said. “Likewise, starburst episodes not only produce plentiful ultraviolet light — they also carve channels into a galaxy’s interstellar matter that helps this light break out.”
Image C: A deeper look into small, young, star-forming galaxies during reionization
At left is an enlarged infrared view of galaxy cluster Abell 2744 with three young, star-forming galaxies highlighted by green diamonds. The center column shows close-ups of each galaxy, along with their designations, the amount of magnification provided by the cluster’s gravitational lens, their redshifts (shown as z — all correspond to a cosmic age of about 790 million years), and their estimated mass of stars. At right, measurements from NASA’s James Webb Space Telescope’s NIRSpec instrument confirm that the galaxies produce strong emission in the light of doubly ionized oxygen (green bars), indicating vigorous star formation is taking place. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 The astronomers looked for strong sources of a specific wavelength of light that signifies the presence of high-energy processes: a green line emitted by oxygen atoms that have lost two electrons. Originally emitted as visible light in the early cosmos, the green glow from doubly ionized oxygen was stretched into the infrared as it traversed the expanding universe and eventually reached Webb’s instruments.
This technique revealed 83 small starburst galaxies as they appear when the universe was 800 million years old, or about 6% of its current age of 13.8 billion years. The team selected 20 of these for deeper inspection using NIRSpec.
“These galaxies are so small that, to build the equivalent stellar mass of our own Milky Way galaxy, you’d need from 2,000 to 200,000 of them,” Malhotra said. “But we are able to detect them because of our novel sample selection technique combined with gravitational lensing.”
Image D: Tiny but mighty galaxy helped clear cosmic fog
One of the most interesting galaxies of the study, dubbed 41028 (the green oval at center), has an estimated stellar mass of just 2 million Suns — comparable to the masses of the largest star clusters in our own Milky Way galaxy. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 Similar types of galaxies in the present-day universe, such as green peas, release about 25% of their ionizing ultraviolet light into surrounding space. If the low-mass starburst galaxies explored by Wold and his team release a similar amount, they can account for all of the ultraviolet light needed to convert the universe’s neutral hydrogen to its ionized form.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Downloads
Click any image above to open a larger version.
Download high-resolution images from NASA’s Scientific Visualization Studio.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Related Information
Article: Types of Galaxies
Video: Different types of galaxies
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Galaxies Stories
Universe
Share
Details
Last Updated Jun 11, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Galaxies Goddard Space Flight Center Science & Research The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.