Jump to content

Sol 4564: Front Hazard Avoidance Camera (Front Hazcam)


Recommended Posts

  • Publishers
Posted
The image above shows the drill poised on the surface of Mars
This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4564
NASA/JPL-Caltech

Written by Michelle Minitti, Planetary Geologist at Framework

Earth planning date: Monday, June 9, 2025

The image above shows the drill poised on the surface of Mars at the start of our attempt to collect sample at “Altadena” over the weekend. Now we know, from subsequent imaging and telemetry, that the drill activity was successful, allowing planning today to focus on delivering sample powder to CheMin and SAM. CheMin and SAM will give us their distinct and valuable insights into the mineralogy (CheMin) and volatiles and organic compounds (SAM) within Altadena, which are key to our continued unravelling the history of Mt. Sharp. It is always exciting to find out what each of these instruments uncovers from Martian samples.

In addition to those sample deliveries, we had three other Altadena-focused activities. We acquired ChemCam RMI of the drill hole which helps ChemCam refine their laser targeting for future LIBS analyses of the drill hole. We planned a ChemCam passive spectroscopy observation of the cuttings around the drill hole for more insight into the mineralogy of the sample. We also included a single Mastcam M100 image of the drill hole which helps us track the wind activity at the drill site and thus the stability of the cuttings ahead of planned observations with APXS and MAHLI.

The weekend activities ran faster and more efficiently than modeled so that we had power to add additional science observations into the plan. We gathered more ChemCam data from the bedrock near Altadena at the target “Bolsa Chica,” and planned two ChemCam RMI long distance mosaics on sedimentary structures within “Texoli” butte and nearby boxwork structures. We kept track of the environment around us with yet more Mastcam imaging for wind-induced changes in the “Camp Williams” area, regular RAD and REMS measurements, two DAN measurements, and Navcam dust devil imaging and cloud movies.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sol 4553: Back to the Boxwork!
      NASA’s Mars rover Curiosity acquired this image of its workspace in the “boxwork” terrain area, showing resistant, ridge-like features where it will investigate the targets dubbed “Sisquoc River” and “Palo Verde Mountains.” Curiosity acquired the image using its Left Navigation Camera on May 27, 2025 — Sol 4552, or Martian day 4,552 of the Mars Science Laboratory mission — at 08:38:12 UTC. NASA/JPL-Caltech Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
      Earth planning date: Tuesday, May 27, 2005
      We return to planning today after a successful long weekend and about 42 meters of drive distance (about 138 feet). We planned four sols of activities on Friday to keep Curiosity busy, while the U.S.-based science team and engineers took time off yesterday for the Memorial Day holiday. As we got to admire the new workspace and drive direction view in front of the rover this morning, I realized that we have now driven about 35 kilometers (about 22 miles) and climbed more than 850 meters (2,789 feet) in elevation since landing nearly 13 years ago, and we continue to do exciting science on Mars, having recently driven onto new terrain. 
      The so-called boxwork structures are a series of resistant ridges observed both from orbit and in long-distance rover imaging (see Ashley’s blog here). Not only are the ridges of interest (do they indicate enhanced fluid-flow and cementation?), but the outcrop expression in general changed after we drove over a shallow trough onto the rocks that host the ridges.
      This plan will continue characterization of the interesting boxwork terrain. We had an example of a more resistant, ridge-like feature in our workspace today (see accompanying image). The composition of the ridge will be investigated using ChemCam (target “Sisquoc River”) and APXS (target “Palo Verde Mountains”), with accompanying Mastcam and MAHLI images. We will also acquire Mastcam imaging of a trough-like feature surrounding a bedrock slab, as part of our ongoing documentation of such structures, as well as of an apparent resistant boxwork ridge in the distance (“Lake Cachuma”). And a first for our mission, we are planning the longest-distance ChemCam remote imaging mosaic that we will have acquired — 91 kilometers (almost 57 miles) away! The intent is to compare the long-distance view from the ground with HiRISE orbital images in an attempt to create a 3D view. We also managed to squeeze in a Navcam large dust-devil survey before the planned 24-meter drive (about 79 feet). Once we arrive at our new location, MARDI will take an image of the terrain beneath the rover.
      The plan is rounded out with the standard REMS, DAN and RAD activities.
      Share








      Details
      Last Updated May 29, 2025 Related Terms
      Blogs Explore More
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      42 minutes ago
      4 min read Sols 4549-4552: Keeping Busy Over the Long Weekend


      Article


      2 days ago
      2 min read Sols 4547-4548: Taking in the View After a Long Drive


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sol 4546: Martian Jenga
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 19, 2025 — Sol 4544, or Martian day 4,544 of the Mars Science Laboratory mission — at 02:23:29 UTC. NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
      Earth planning date: Monday, May 19, 2025
      Have you ever played the game Jenga, where you remove one wooden block from a stack, gently place it on another part of the stack, then repeat over and over as you try to keep the stack from toppling over? There are strategies to the game such as what blocks you can afford to remove, and where you can manage to place them without throwing the structure out of balance. That is very much how planning felt today — but instead of wooden blocks, the objects the science team was moving around were science observations in the plan.
      We had an unusual one-sol plan today so there were very restricted time windows in the plan in which to fit science observations and our next drive. We are driving through an area with criss-crossing fracture sets (which we call boxwork structures) large enough to be seen from orbit. Since they have only recently come within our view, there is no shortage of new observations to make of the fractures as we try to understand the processes that led to their formation. If the fractures were caused by extensive fluid flow through the Martian crust, understanding them would be an important contribution toward tracing the history of Martian water.
      To fit in all the desired observations — including APXS and MAHLI on a DRT-brushed target, multiple ChemCam RMI and Mastcam mosaics, and a ChemCam LIBS analysis — in addition to environmental monitoring activities and a long drive, the team used every trick in its book to achieve a delicate balancing act of science, time, and power. Some activities were trimmed to fit in smaller time windows, others were moved to less-constrained parts of the plan, and other activities were placed in parallel with each other to take advantage of Curiosity’s ability to multitask. 
      Once our planning Jenga game was over, the team had won — we had a complete and perfectly balanced plan! Who says you cannot teach an old dog (4,546-sols-old) new tricks?
      Share








      Details
      Last Updated May 22, 2025 Related Terms
      Blogs Explore More
      5 min read Sols 4543-4545: Leaving the Ridge for the Ridges


      Article


      2 days ago
      3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?


      Article


      3 days ago
      1 min read Sols 4539-4540: Back After a Productive Weekend Plan


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA Astronaut Don Pettit Turns the Camera on Science
    • By NASA
      4 Min Read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      NASA astronaut Don Pettit is scheduled to return home in mid-April after a seven-month mission aboard the International Space Station as part of Expedition 72. Throughout his stay, Pettit contributed to research that benefits humanity and future space missions.

      Pettit also shared what he calls “science of opportunity” to demonstrate how experimenting with our surroundings can help gain a better understanding of how things work. This understanding is perhaps enhanced when art, science, and microgravity come together.
      Electrostatic Displays
      NASA astronaut Don Pettit demonstrates electrostatic forces using charged water droplets and a knitting needle made of Teflon. This series of overlapping frames displays the unique attraction-repulsion properties of Teflon and charged droplets, similar to how charged particles from the Sun behave when they come in contact with Earth’s magnetic field. Highly energetic particles from space that collide with atoms and molecules in the atmosphere create the aurora borealis.
      Specialized Equipment for Superb Science
      NASA astronaut Don Pettit snaps an image of the hands of NASA astronauts Nick Hague, left, and Suni Williams inside the Life Science Glovebox, a facility at the International Space Station that separates the science from the scientists, thus protecting both from contamination.
      The freezers on the International Space Station are as crucial as its experiment modules, preserving samples for further analysis on Earth. The Minus Eighty-Degree Laboratory Freezer for International Space Station stores samples at ultra-cold temperatures. NASA astronaut Don Pettit used it to freeze thin ice wafers, which he photographed with a polarizing filter to reveal unique crystal structures.
      New Tech Roll-Out
      NASA astronaut Don Pettit films a time-lapse sequence of Canadarm2 retrieving Materials International Space Station Experiment (MISSE-20-Commercial) samples at the International Space Station. This investigation exposed various experiments to the harsh space environment, such as vacuum, radiation, and extreme temperatures. Findings could help in many areas, from designing more durable materials to advancing quantum communications.
      A surge in International Space Station research supports NASA’s exploration efforts at the Moon and beyond, requiring more energy to operate the orbiting laboratory. NASA astronaut Don Pettit photographs new and old solar arrays side by side. The technology used by the International Space Station Roll-Out Solar Arrays (IROSA) on the right was first tested aboard the station in 2017. By 2023, six IROSAs were deployed aboard station, providing a 20-30% increase in power for research and operations. Roll-Out Solar Arrays were also used on NASA’s DART asteroid mission and now are slated for the Gateway lunar outpost, a vital component of Artemis.
      Squire for Spacewalks
      I am the nameless boy who stays in the confines of the tent helping the Knights suit up for battle. I remain in the airlock, preparing these knights for a walk outside.
      Don Pettit
      "Space Squire" posted to X
      NASA astronaut Don Pettit helped his colleagues suit up for two spacewalks in January. The first spacewalk involved patching the Neutron Star Interior Composition Explorer (NICER), a telescope that measures X-rays from neutron stars and other cosmic objects. Sunlight interference affected data collection, and the patches reduced this issue. On the second spacewalk, astronauts collected samples from the exterior of the International Space Station for ISS External Microorganisms. This investigation examines whether the orbiting laboratory releases microbes, how many, and how far these may travel. Findings could inform the design of future spacecraft, including spacesuits, to limit biocontamination during future space missions.
      Photography with a Spin
      NASA astronaut Don Pettit photographs “cosmic colors at sunrise.” From 250 miles above, the International Space Station’s orbital path covers most of Earth’s population, offering valuable data and a great opportunity for shooting breathtaking photography.
      NASA astronaut Don Pettit leveraged his stay aboard the International Space Station to photograph our planet with an artistic twist.
      NASA astronaut Don Pettit wrote on social media about his snapshot of the Mediterranean Sea from the International Space Station, “Sun glint off the Mediterranean Sea (infrared and converted to black and white). When the Sun reflects off the ocean, watery details unseen with normal lighting appear. Small centimeter differences in ocean height become visible, revealing hidden currents.”
      NASA astronaut Don Pettit’s photography could contribute to the study of transient luminous events, colorful electrical discharges that occur above thunderstorms. His imagery can be paired with data from the Atmosphere-Space Interactions Monitor (ASIM) and Thor-Davis, a high-speed thunderstorm camera. The combined efforts of crew photography and instruments aboard the International Space Station help scientists better understand thunderstorms and their impacts on Earth’s upper atmosphere.
      More of Pettit’s photography can be found on his X profile, @astro_Pettit.
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      ISS Research Donald R. Pettit Expedition 72 Humans in Space International Space Station (ISS) Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:02:14 On 12 March 2025, ESA’s Hera spacecraft soared just 5000 km above Mars and passed within 300 km of its distant moon, Deimos. Captured by Hera’s 1020x1020 pixel Asteroid Framing Camera, this video sequence offers a rare view of the red planet and its enigmatic moon. The original greyscale images have been colour-enhanced based on known surface features.
      View the full article
  • Check out these Videos

×
×
  • Create New...