Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Science James Webb Space Telescope (JWST) NASA’s Webb Observes Immense… Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning   6 Min Read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Full image shown below. Credits:
      Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured by NASA’s James Webb Space Telescope. Stretching across 8 light-years, the length of the stellar eruption is approximately twice the distance between our Sun and the next nearest stars, the Alpha Centauri system. The size and strength of this particular stellar jet, located in a nebula known as Sharpless 2-284 (Sh2-284 for short), qualifies it as rare, say researchers.
      Streaking across space at hundreds of thousands of miles per hour, the outflow resembles a double-bladed dueling lightsaber from the Star Wars films. The central protostar, weighing as much as ten of our Suns, is located 15,000 light-years away in the outer reaches of our galaxy.
      The Webb discovery was serendipitous. “We didn’t really know there was a massive star with this kind of super-jet out there before the observation. Such a spectacular outflow of molecular hydrogen from a massive star is rare in other regions of our galaxy,” said lead author Yu Cheng of the National Astronomical Observatory of Japan.
      Image A: Stellar Jet in Sh2-284 (NIRCam Image)
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) This unique class of stellar fireworks are highly collimated jets of plasma shooting out from newly forming stars. Such jetted outflows are a star’s spectacular “birth announcement” to the universe. Some of the infalling gas building up around the central star is blasted along the star’s spin axis, likely under the influence of magnetic fields.
      Today, while hundreds of protostellar jets have been observed, these are mainly from low-mass stars. These spindle-like jets offer clues into the nature of newly forming stars. The energetics, narrowness, and evolutionary time scales of protostellar jets all serve to constrain models of the environment and physical properties of the young star powering the outflow.
      “I was really surprised at the order, symmetry, and size of the jet when we first looked at it,” said co-author Jonathan Tan of the University of Virginia in Charlottesville and Chalmers University of Technology in Gothenburg, Sweden.
      Its detection offers evidence that protostellar jets must scale up with the mass of the star powering them. The more massive the stellar engine propelling the plasma, the larger the gusher’s size.
      The jet’s detailed filamentary structure, captured by Webb’s crisp resolution in infrared light, is evidence the jet is plowing into interstellar dust and gas. This creates separate knots, bow shocks, and linear chains.
      The tips of the jet, lying in opposite directions, encapsulate the history of the star’s formation. “Originally the material was close into the star, but over 100,000 years the tips were propagating out, and then the stuff behind is a younger outflow,” said Tan.
      Outlier
      At nearly twice the distance from the galactic center as our Sun, the host proto-cluster that’s home to the voracious jet is on the periphery of our Milky Way galaxy.
      Within the cluster, a few hundred stars are still forming. Being in the galactic hinterlands means the stars are deficient in heavier elements beyond hydrogen and helium. This is measured as metallicity, which gradually increases over cosmic time as each passing stellar generation expels end products of nuclear fusion through winds and supernovae. The low metallicity of Sh2-284 is a reflection of its relatively pristine nature, making it a local analog for the environments in the early universe that were also deficient in heavier elements.
      “Massive stars, like the one found inside this cluster, have very important influences on the evolution of galaxies. Our discovery is shedding light on the formation mechanism of massive stars in low metallicity environments, so we can use this massive star as a laboratory to study what was going on in earlier cosmic history,” said Cheng.
      Unrolling Stellar Tapestry
      Stellar jets, which are powered by the gravitational energy released as a star grows in mass, encode the formation history of the protostar.
      “Webb’s new images are telling us that the formation of massive stars in such environments could proceed via a relatively stable disk around the star that is expected in theoretical models of star formation known as core accretion,” said Tan. “Once we found a massive star launching these jets, we realized we could use the Webb observations to test theories of massive star formation. We developed new theoretical core accretion models that were fit to the data, to basically tell us what kind of star is in the center. These models imply that the star is about 10 times the mass of the Sun and is still growing and has been powering this outflow.”
      For more than 30 years, astronomers have disagreed about how massive stars form. Some think a massive star requires a very chaotic process, called competitive accretion.
      In the competitive accretion model, material falls in from many different directions so that the orientation of the disk changes over time. The outflow is launched perpendicularly, above and below the disk, and so would also appear to twist and turn in different directions.
      “However, what we’ve seen here, because we’ve got the whole history – a tapestry of the story – is that the opposite sides of the jets are nearly 180 degrees apart from each other. That tells us that this central disk is held steady and validates a prediction of the core accretion theory,” said Tan.
      Where there’s one massive star, there could be others in this outer frontier of the Milky Way. Other massive stars may not yet have reached the point of firing off Roman-candle-style outflows. Data from the Atacama Large Millimeter Array in Chile, also presented in this study, has found another dense stellar core that could be in an earlier stage of construction.
      The paper has been accepted for publication in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Related Information
      View more: Webb images of other protostar outflows – HH 49/50, L483, HH 46/47, and HH 211
      View more: Data visualization of protostar outflows – HH 49/50
      Animation Video – “Exploring Star and Planet Formation”
      Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
      Read more about Herbig-Haro objects
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Related Images & Videos
      Stellar Jet in Sh2-284 (NIRCam Image)
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars–the more massive the stellar engine driving the plasma, the larger the resulting jet.


      Stellar Jet in Sh2-284 (NIRCam Compass Image)
      This image of the stellar jet in Sh2-284, captured by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera), shows compass arrows, scale bar, and color key for reference.


      Immense Stellar Jet in Sh2-284
      This video shows the relative size of two different protostellar jets imaged by NASA’s James Webb Space Telescope. The first image shown is an extremely large protostellar jet located in Sh2-284, 15,000 light-years away from Earth. The outflows from the massive central prot…




      Share








      Details
      Last Updated Sep 10, 2025 Location NASA Goddard Space Flight Center Contact Media Laura Betz
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      laura.e.betz@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Christine Pulliam
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe
      Related Links and Documents
      The journal paper by Y. Cheng et al.

      Keep Exploring Related Topics
      James Webb Space Telescope


      Space Telescope


      Stars



      Stars Stories



      Universe


      View the full article
    • By European Space Agency
      Image: Immense stellar jet in Milky Way outskirts View the full article
    • By NASA
      NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.
      The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.
      NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon Technologies Atmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.
      Novel tools for Observing Storm Systems
      In the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.
      The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.
      William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”
      With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.
      The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”
      In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.
      Transition to Industry
      By the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.
      In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.
      “When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.
      Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.
      More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.
      Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.
      A Cycle of Innovation
      The relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.
      Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.
      By Gage Taylor
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 02, 2025 Related Terms
      Earth Hurricanes & Typhoons TROPICS (Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Constellation of Smallsats) View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Cloud cover can keep optical instruments on satellites from clearly capturing Earth’s surface. Still in testing, JPL’s Dynamic Targeting uses AI to avoid imaging clouds, yielding a higher proportion of usable data, and to focus on phenomena like this 2015 volcanic eruption in Indonesia Landsat 8 captured.NASA/USGS A technology called Dynamic Targeting could enable spacecraft to decide, autonomously and within seconds, where to best make science observations from orbit.
      In a recent test, NASA showed how artificial intelligence-based technology could help orbiting spacecraft provide more targeted and valuable science data. The technology enabled an Earth-observing satellite for the first time to look ahead along its orbital path, rapidly process and analyze imagery with onboard AI, and determine where to point an instrument. The whole process took less than 90 seconds, without any human involvement.
      Called Dynamic Targeting, the concept has been in development for more than a decade at NASA’s Jet Propulsion Laboratory in Southern California. The first of a series of flight tests occurred aboard a commercial satellite in mid-July. The goal: to show the potential of Dynamic Targeting to enable orbiters to improve ground imaging by avoiding clouds and also to autonomously hunt for specific, short-lived phenomena like wildfires, volcanic eruptions, and rare storms.
      This graphic shows how JPL’s Dynamic Targeting uses a lookahead sensor to see what’s on a satellite’s upcoming path. Onboard algorithms process the sensor’s data, identifying clouds to avoid and targets of interest for closer observation as the satellite passes overhead.NASA/JPL-Caltech “The idea is to make the spacecraft act more like a human: Instead of just seeing data, it’s thinking about what the data shows and how to respond,” says Steve Chien, a technical fellow in AI at JPL and principal investigator for the Dynamic Targeting project. “When a human sees a picture of trees burning, they understand it may indicate a forest fire, not just a collection of red and orange pixels. We’re trying to make the spacecraft have the ability to say, ‘That’s a fire,’ and then focus its sensors on the fire.”
      Avoiding Clouds for Better Science
      This first flight test for Dynamic Targeting wasn’t hunting specific phenomena like fires — that will come later. Instead, the point was avoiding an omnipresent phenomenon: clouds.
      Most science instruments on orbiting spacecraft look down at whatever is beneath them. However, for Earth-observing satellites with optical sensors, clouds can get in the way as much as two-thirds of the time, blocking views of the surface. To overcome this, Dynamic Targeting looks 300 miles (500 kilometers) ahead and has the ability to distinguish between clouds and clear sky. If the scene is clear, the spacecraft images the surface when passing overhead. If it’s cloudy, the spacecraft cancels the imaging activity to save data storage for another target.
      “If you can be smart about what you’re taking pictures of, then you only image the ground and skip the clouds. That way, you’re not storing, processing, and downloading all this imagery researchers really can’t use,” said Ben Smith of JPL, an associate with NASA’s Earth Science Technology Office, which funds the Dynamic Targeting work. “This technology will help scientists get a much higher proportion of usable data.”
      How Dynamic Targeting Works
      The testing is taking place on CogniSAT-6, a briefcase-size CubeSat that launched in March 2024. The satellite — designed, built, and operated by Open Cosmos — hosts a payload designed and developed by Ubotica featuring a commercially available AI processor. While working with Ubotica in 2022, Chien’s team conducted tests aboard the International Space Station running algorithms similar to those in Dynamic Targeting on the same type of processor. The results showed the combination could work for space-based remote sensing.
      Since CogniSAT-6 lacks an imager dedicated to looking ahead, the spacecraft tilts forward 40 to 50 degrees to point its optical sensor, a camera that sees both visible and near-infrared light. Once look-ahead imagery has been acquired, Dynamic Targeting’s advanced algorithm, trained to identify clouds, analyzes it. Based on that analysis, the Dynamic Targeting planning software determines where to point the sensor for cloud-free views. Meanwhile, the satellite tilts back toward nadir (looking directly below the spacecraft) and snaps the planned imagery, capturing only the ground.
      This all takes place in 60 to 90 seconds, depending on the original look-ahead angle, as the spacecraft speeds in low Earth orbit at nearly 17,000 mph (7.5 kilometers per second).
      What’s Next
      With the cloud-avoidance capability now proven, the next test will be hunting for storms and severe weather — essentially targeting clouds instead of avoiding them. Another test will be to search for thermal anomalies like wildfires and volcanic eruptions. The JPL team developed unique algorithms for each application.
      “This initial deployment of Dynamic Targeting is a hugely important step,” Chien said. “The end goal is operational use on a science mission, making for a very agile instrument taking novel measurements.”
      There are multiple visions for how that could happen — possibly even on spacecraft exploring the solar system. In fact, Chien and his JPL colleagues drew some inspiration for their Dynamic Targeting work from another project they had also worked on: using data from ESA’s (the European Space Agency’s) Rosetta orbiter to demonstrate the feasibility of autonomously detecting and imaging plumes emitted by comet 67P/Churyumov-Gerasimenko.
      On Earth, adapting Dynamic Targeting for use with radar could allow scientists to study dangerous extreme winter weather events called deep convective ice storms, which are too rare and short-lived to closely observe with existing technologies. Specialized algorithms would identify these dense storm formations with a satellite’s look-ahead instrument. Then a powerful, focused radar would pivot to keep the ice clouds in view, “staring” at them as the spacecraft speeds by overhead and gathers a bounty of data over six to eight minutes.
      Some ideas involve using Dynamic Targeting on multiple spacecraft: The results of onboard image analysis from a leading satellite could be rapidly communicated to a trailing satellite, which could be tasked with targeting specific phenomena. The data could even be fed to a constellation of dozens of orbiting spacecraft. Chien is leading a test of that concept, called Federated Autonomous MEasurement, beginning later this year.
      How AI supports Mars rover science Autonomous robot fleet could measure ice shelf melt Ocean world robot swarm prototype gets a swim test News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-094
      Share
      Details
      Last Updated Jul 24, 2025 Related Terms
      Earth Science Earth Science Technology Office Jet Propulsion Laboratory Explore More
      5 min read NASA Shares How to Save Camera 370-Million-Miles Away Near Jupiter
      Article 3 days ago 2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
      On June 16-17, 2025, 50 students at Camp Young in Chesapeake, Virginia traded their usual…
      Article 3 days ago 6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      NASA, JAXA XRISM Satellite X-rays Milky Way’s Sulfur
      An international team of scientists have provided an unprecedented tally of elemental sulfur spread between the stars using data from the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) spacecraft.
      Astronomers used X-rays from two binary star systems to detect sulfur in the interstellar medium, the gas and dust found in the space between stars. It’s the first direct measurement of both sulfur’s gas and solid phases, a unique capability of X-ray spectroscopy, XRISM’s (pronounced “crism”) primary method of studying the cosmos. 
      “Sulfur is important for how cells function in our bodies here on Earth, but we still have a lot of questions about where it’s found out in the universe,” said Lía Corrales, an assistant professor of astronomy at the University of Michigan in Ann Arbor. “Sulfur can easily change from a gas to a solid and back again. The XRISM spacecraft provides the resolution and sensitivity we need to find it in both forms and learn more about where it might be hiding.”
      A paper about these results, led by Corrales, published June 27 in the Publications of the Astronomical Society of Japan. 

      Watch to learn how the XRISM (X-ray Imaging and Spectroscopy Mission) satellite took an unprecidented look at our galaxy’s sulfur. XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency).
      NASA’s Goddard Space Flight Center Using ultraviolet light, researchers have found gaseous sulfur in the space between stars. In denser parts of the interstellar medium, such as the molecular clouds where stars and planets are born, this form of sulfur quickly disappears. 
      Scientists assume the sulfur condenses into a solid, either by combining with ice or mixing with other elements. 
      When a doctor performs an X-ray here on Earth, they place the patient between an X-ray source and a detector. Bone and tissue absorb different amounts of the light as it travels through the patient’s body, creating contrast in the detector.
      To study sulfur, Corrales and her team did something similar. 
      They picked a portion of the interstellar medium with the right density — not so thin that all the X-rays would pass through unchanged, but also not so dense that they would all be absorbed.
      Then the team selected a bright X-ray source behind that section of the medium, a binary star system called GX 340+0 located over 35,000 light-years away in the southern constellation Scorpius. 
      This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). X-ray binary GX 340+0 is the blue dot in the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). The X-ray binary 4U 1630–472 is highlighted at the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center Using the Resolve instrument on XRISM, the scientists were able to measure the energy of GX 340+0’s X-rays and determined that sulfur was present not only as a gas, but also as a solid, possibly mixed with iron.
      “Chemistry in environments like the interstellar medium is very different from anything we can do on Earth, but we modeled sulfur combined with iron, and it seems to match what we’re seeing with XRISM,” said co-author Elisa Costantini, a senior astronomer at the Space Research Organization Netherlands and the University of Amsterdam. “Our lab has created models for different elements to compare with astronomical data for years. The campaign is ongoing, and soon we’ll have new sulfur measurements to compare with the XRISM data to learn even more.”
      Iron-sulfur compounds are often found in meteorites, so scientists have long thought they might be one way sulfur solidifies out of molecular clouds to travel through the universe. 
      In their paper, Corrales and her team propose a few compounds that would match XRISM’s observations — pyrrhotite, troilite, and pyrite, which is sometimes called fool’s gold. 
      The researchers were also able to use measurements from a second X-ray binary called 4U 1630-472 that helped confirm their findings. 
      “NASA’s Chandra X-ray Observatory has previously studied sulfur, but XRISM’s measurements are the most detailed yet,” said Brian Williams, the XRISM project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since GX 340+0 is on the other side of the galaxy from us, XRISM’s X-ray observations are a unique probe of sulfur in a large section of the Milky Way. There’s still so much to learn about the galaxy we call home.”
      XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed Resolve, the mission’s microcalorimeter spectrometer.
      Download images and videos through NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Alise Fisher
      202-358-2546
      alise.m.fisher@nasa.gov
      NASA Headquarters, Washington
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
      Details
      Last Updated Jul 23, 2025 EditorJeanette Kazmierczak Related Terms
      Goddard Space Flight Center Astrophysics Stars The Universe X-ray Astronomy X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) View the full article
  • Check out these Videos

×
×
  • Create New...