Jump to content

Recommended Posts

  • Publishers
Posted
Christina Zeringue wearing a gray cardigan stands before a silver NASA insignia
Christina Zeringue is the chief safety and mission assurance officer at NASA’s Stennis Space Center. She is responsible for the safety and mission success of all activities, including rocket propulsion testing and operation of the NASA Stennis federal city.
NASA/Danny Nowlin

Christina Zeringue remembers being 10 years old, looking to the sky through her new telescope to view the Moon and planets on Christmas night. It opened her eyes to space and inspired her journey from the backyard to NASA’s Stennis Space Center near Bay St. Louis, Mississippi.

“I became fascinated with astronomy and learning about stars and constellations, the solar system and planetary orbits, solar and lunar eclipses, and challenging myself to find stars and nebula at different distances from Earth,” Zeringue said. “I was able to do and learn so much just from my own yard.”

She became obsessed with following the development and images produced from the Hubble Space Telescope, which launched on a space shuttle that featured three main engines tested at NASA Stennis.

Zeringue desired to learn more about the universe and find a way to be part of the effort to continue exploring. The Kenner, Louisiana, native ultimately made her way to NASA Stennis following graduation from the University of New Orleans.

As the NASA Stennis chief safety and mission assurance officer, Zeringue is responsible for safety and mission success of all site activities. These include both rocket propulsion testing and operation of the NASA Stennis federal city, where NASA and more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations located onsite share in operating costs while pursuing individual missions.

Christina Zeringue is seen standing behind a telescope outdoors
Christina Zeringue enjoys viewing the partial solar eclipse on Oct. 14, 2023, from Slidell, Louisiana.
NASA/Danny Nowlin

“I have a broad range of responsibilities, which allows me to work with many talented people, pushes me to learn and develop new skills, and keeps my work interesting every day,” Zeringue said.

Zeringue’s work has supported NASA’s Artemis campaign to return astronauts to the Moon through her contributions to RS-25 engine testing and Green Run testing of NASA’s SLS (Space Launch System) core stage ahead of the successful launch of Artemis I.

The Pearl River, Louisiana, resident often encounters engineering or safety challenges where there is not a clear answer to the solution.

“We work together to understand new problems, determine the best course of action, and create new processes and ways to handle every challenge,” she said.

In total, Zeringue has worked 28 years at NASA Stennis – 14 as a contractor and 14 with NASA.

As a contractor, Zeringue initially worked as test article engineer for the Space Shuttle Main Engine Program. She followed that by serving as the quality systems manager, responsible for the quality engineering and configuration management of various engine systems, such as the space shuttle main engine, the RS-68 engine or Delta IV vehicles, and the J-2X upper stage engine.

Zeringue transitioned to NASA in 2011, first as a facility systems safety engineer and then as chief of the operations support division within the NASA Stennis Safety and Mission Assurance Directorate. 

Her proudest career moment came early when working on final inspection of a new high pressure fuel turbopump. She noted a piece of contamination lodged behind the turbine shroud, which had been missed in previous inspections. Ultimately, the part was returned for disassembly before its next flight.

“While our post-test inspections can sometimes become routine, that day still stands out to me as a way that I really knew I directly contributed to the safety of our astronauts,” she said.

From the time Zeringue first looked through her new telescope, to her role as NASA Stennis chief safety and mission assurance officer, each moment along the way has contributed to the advice Zeringue shares with anyone considering a career with NASA. “Stay curious, invest in your own development, share your expertise with others, and try something new every day,” she said.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
      This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
      “Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
      Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
      This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
      “As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
      The rovers and instruments that are part of this newly awarded flight include:
      MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
      Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
      Lead development organization: NASA’s Langley Research Center in Hampton, Virginia.  Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
      Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
      Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
      Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
      To learn more about CLPS and Artemis, visit:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Nilufar Ramji   
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
    • By NASA
      An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26, 2025, at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to design air taxis and other new electric aircraft, there’s a growing need to understand how the materials behave. That’s why NASA is investigating potential air taxi materials and designs to best protect passengers in the event of a crash.
      On June 26, 2025, at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
      The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
      Image Credit: NASA/Mark Knopp
      View the full article
    • By NASA
      NASA Astronaut Kate RubinsNASA NASA astronaut and microbiologist Kate Rubins retired Monday after 16 years with the agency. During her time with NASA, Rubins completed two long-duration missions aboard the International Space Station, logging 300 days in space and conducting four spacewalks.
       
      “I want to extend my sincere gratitude to Kate for her dedication to the advancement of human spaceflight,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “She is leaving behind a legacy of excellence and inspiration, not only to our agency, but to the research and medical communities as well. Congratulations, Kate, on an extraordinary career.”
       
      Rubins’ first mission to the orbiting laboratory began in July 2016, aboard the first test flight of the new Soyuz MS spacecraft. As part of Expedition 48/49, she contributed to more than 275 scientific experiments, including molecular and cellular biology research, and she was the first person to sequence DNA in space. Her work enabled significant advances with in-flight molecular diagnostics, long-duration cell culture, and the development of molecular biology tools and processes, such as handling and transferring small amounts of liquids in microgravity. Rubins also led the integration and deployment of biomedical hardware aboard the space station, supporting crew health and scientific research in space and on Earth.
       
      She again launched in October 2020, aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, taking part in Expedition 63/64. Alongside her crewmates, Rubins spent hundreds of hours working on new experiments and furthering research investigations conducted during her mission, including heart research and multiple microbiology studies. She also advanced her work on DNA sequencing in space, which could allow future astronauts to diagnose illness or identify microbes growing aboard the station or during future exploration missions.
       
      “From her groundbreaking work in space to her leadership on the ground, Kate has brought passion and excellence to everything she’s done,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She’s been an incredible teammate and role model. We will miss her deeply, but her impact will continue to inspire.”
       
      In addition to her flight assignments, Rubins served as acting deputy director of NASA’s Human Health and Performance Directorate, where she helped guide strategy for crew health and biomedical research. More recently, she contributed to developing next-generation lunar spacesuits, helping prepare for future Artemis missions to the Moon.
       
       
      Before her selection as an astronaut in 2009, Rubins received a bachelor’s degree in molecular biology from the University of California, San Diego, and a doctorate in cancer biology from Stanford University Medical School’s Biochemistry Department and Microbiology and Immunology Department. After returning from her second space mission, Rubins commissioned as a major in the U.S. Army Reserve, serving as a microbiologist in the Medical Service Corps. She currently holds the role of innovation officer with the 75th U.S. Army Reserve Innovation Command’s MedBio Detachment, headquartered in Boston. 


      A frequent keynote speaker at scientific, educational, and industry events on space biology, biomedical engineering, and human exploration, Rubins has advocated for NASA’s scientific and exploration missions. As she transitions from government service, she remains committed to advancing innovation at the intersection of biology, technology, and space.
       
      “It has been the honor of a lifetime to live and work in space,” said Rubins. “I am grateful for the extraordinary advances at NASA, and it was a privilege to serve and contribute to something so meaningful. The mission of exploration continues, and I can’t wait to watch this nation do what once seemed impossible.”
       

      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      -end-
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov

      View the full article
    • By NASA
      NASA's SpaceX Crew-11 Mission to the International Space Station (Official NASA Trailer)
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory team up to identify a possible intermediate-mass black hole. Credits:
      NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a new possible example of a rare class of black holes. Called NGC 6099 HLX-1, this bright X-ray source seems to reside in a compact star cluster in a giant elliptical galaxy.
      Just a few years after its 1990 launch, Hubble discovered that galaxies throughout the universe can contain supermassive black holes at their centers weighing millions or billions of times the mass of our Sun. In addition, galaxies also contain as many as millions of small black holes weighing less than 100 times the mass of the Sun. These form when massive stars reach the end of their lives.
      Far more elusive are intermediate-mass black holes (IMBHs), weighing between a few hundred to a few 100,000 times the mass of our Sun. This not-too-big, not-too-small category of black holes is often invisible to us because IMBHs don’t gobble as much gas and stars as the supermassive ones, which would emit powerful radiation. They have to be caught in the act of foraging in order to be found. When they occasionally devour a hapless bypassing star — in what astronomers call a tidal disruption event— they pour out a gusher of radiation.
      The newest probable IMBH, caught snacking in telescope data, is located on the galaxy NGC 6099’s outskirts at approximately 40,000 light-years from the galaxy’s center, as described in a new study in the Astrophysical Journal. The galaxy is located about 450 million light-years away in the constellation Hercules.
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star. Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) Astronomers first saw an unusual source of X-rays in an image taken by Chandra in 2009. They then followed its evolution with ESA’s XMM-Newton space observatory.
      “X-ray sources with such extreme luminosity are rare outside galaxy nuclei and can serve as a key probe for identifying elusive IMBHs. They represent a crucial missing link in black hole evolution between stellar mass and supermassive black holes,” said lead author Yi-Chi Chang of the National Tsing Hua University, Hsinchu, Taiwan.
      X-ray emission coming from NGC 6099 HLX-1 has a temperature of 3 million degrees, consistent with a tidal disruption event. Hubble found evidence for a small cluster of stars around the black hole. This cluster would give the black hole a lot to feast on, because the stars are so closely crammed together that they are just a few light-months apart (about 500 billion miles).
      The suspected IMBH reached maximum brightness in 2012 and then continued declining to 2023. The optical and X-ray observations over the period do not overlap, so this complicates the interpretation. The black hole may have ripped apart a captured star, creating a plasma disk that displays variability, or it may have formed a disk that flickers as gas plummets toward the black hole.
      “If the IMBH is eating a star, how long does it take to swallow the star’s gas? In 2009, HLX-1 was fairly bright. Then in 2012, it was about 100 times brighter. And then it went down again,” said study co-author Roberto Soria of the Italian National Institute for Astrophysics (INAF). “So now we need to wait and see if it’s flaring multiple times, or there was a beginning, there was peak, and now it’s just going to go down all the way until it disappears.”
      The IMBH is on the outskirts of the host galaxy, NGC 6099, about 40,000 light-years from the galaxy’s center. There is presumably a supermassive black hole at the galaxy’s core, which is currently quiescent and not devouring a star.
      Black Hole Building Blocks
      The team emphasizes that doing a survey of IMBHs can reveal how the larger supermassive black holes form in the first place. There are two alternative theories. One is that IMBHs are the seeds for building up even larger black holes by coalescing together, since big galaxies grow by taking in smaller galaxies. The black hole in the middle of a galaxy grows as well during these mergers. Hubble observations uncovered a proportional relationship: the more massive the galaxy, the bigger the black hole. The emerging picture with this new discovery is that galaxies could have “satellite IMBHs” that orbit in a galaxy’s halo but don’t always fall to the center.
      Another theory is that the gas clouds in the middle of dark-matter halos in the early universe don’t make stars first, but just collapse directly into a supermassive black hole. NASA’s James Webb Space Telescope’s discovery of very distant black holes being disproportionately more massive relative to their host galaxy tends to support this idea.
      However, there could be an observational bias toward the detection of extremely massive black holes in the distant universe, because those of smaller size are too faint to be seen. In reality, there could be more variety out there in how our dynamic universe constructs black holes. Supermassive black holes collapsing inside dark-matter halos might simply grow in a different way from those living in dwarf galaxies where black-hole accretion might be the favored growth mechanism.
      “So if we are lucky, we’re going to find more free-floating black holes suddenly becoming X-ray bright because of a tidal disruption event. If we can do a statistical study, this will tell us how many of these IMBHs there are, how often they disrupt a star, how bigger galaxies have grown by assembling smaller galaxies.” said Soria.
      The challenge is that Chandra and XMM-Newton only look at a small fraction of the sky, so they don’t often find new tidal disruption events, in which black holes are consuming stars. The Vera C. Rubin Observatory in Chile, an all-sky survey telescope from the U.S. National Science Foundation and the Department of Energy, could detect these events in optical light as far as hundreds of millions of light-years away. Follow-up observations with Hubble and Webb can reveal the star cluster around the black hole.
      The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      NGC 6099 (Hubble + Chandra)
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star.


      NGC 6099 (Hubble)
      A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The white dot labeled HLX-1 is the visible-light component of the location of a compact star cluster where an intermediate-mass black hole is tearing apart a star.


      NGC 6099 Compass Image
      This compass image shows two elliptical galaxies, NGC 6098 at upper right and NGC 6099 at lower left. The fuzzy purple blob at bottom center shows X-ray emission produced by an intermediate-mass black hole tearing apart a star. 


      HLX-1 Illustration
      This sequence of artistic illustrations, from upper left to bottom right, shows how a black hole in the core of a star cluster captures a bypassing star and gravitationally shreds it until there is an explosion, seen in the outskirts of the host galaxy.


      HLX-1 Animation
      This video is an illustration of an intermediate-mass black hole capturing and gravitationally shredding a star. It begins by zooming into a pair of galaxies. The galaxy at lower left, NGC 6099, contain a dense star cluster at center. The video then zooms into the heart of the cl…




      Share








      Details
      Last Updated Jul 24, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center Marshall Astrophysics Marshall Space Flight Center
      Related Links and Documents
      Chinese translation of release Science Paper: Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong IMBH Candidate, PDF (1.81 MB)

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble Black Holes



      Hubble Focus: Black Holes – Into the Vortex


      View the full article
  • Check out these Videos

×
×
  • Create New...