Jump to content

Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition


Recommended Posts

  • Publishers
Posted
4 Min Read

Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition

Group of students from the University of Utah posing with their award

And the winner is… the University of Utah in Salt Lake City. The Utah Student Robotics Club won the grand prize Artemis Award on May 22 for NASA’s 2025 Lunabotics Challenge held at The Astronauts Memorial Foundation’s Center for Space Education at the Kennedy Space Center Visitor Complex in Florida. 

“Win was our motto for the whole year,” said Brycen Chaney, University of Utah, president of student robotics. “We had a mission objective to take our team and competition a step further, but win was right up front of our minds.”

Lunabotics is an annual challenge where students design and build an autonomous and remote-controlled robot to navigate the lunar surface in support of the Artemis campaign. The students from the University of Utah used their robot to excavate simulated regolith, the loose, fragmented material on the Moon’s surface, as well as built a berm. The students, who competed against 37 other teams, won grand prize for the first time during the Lunabotics Challenge.

“During the 16th annual Lunabotics University Challenge the teams continued to raise the bar on excavating, transporting, and depositing lunar regolith simulant with clever remotely controlled robots,” said Robert Mueller, senior technologist at NASA Kennedy for Advanced Products Development in the agency’s Exploration Research and Technology Programs Directorate, and lead judge and co-founder of the original Lunabotics robotic mining challenge. “New designs were revealed, and each team had a unique design and operations approach.”

university-of-illinois-chicago-1st-place
Students from University of Illinois Chicago receive first place for the Robotic Construction Award during the 2025 Lunabotics Challenge.
NASA/Isaac Watson

Other teams were recognized for their achievements: The University of Illinois Chicago placed first for the Robotic Construction Award. “It’s a total team effort that made this work,” said Elijah Wilkinson, senior and team captain at the University of Illinois Chicago. “Our team has worked long and hard on this. We have people who designed the robot, people who programmed the robot, people who wrote papers, people who wired the robot; teamwork is really what made it happen.”

The University of Utah won second and the University of Alabama in Tuscaloosa came in third place, respectively. The award recognizes the teams that score the highest points during the berm-building operations in the Artemis Arena. Teams are evaluated based on their robot’s ability to construct berms using excavated regolith simulant, demonstrating effective lunar surface construction techniques.

To view the robots in action from the Robot Construction Award winners, please click on the following links: University of Illinois Chicago, University of Utah, University of Alabama in Tuscaloosa.

Picture shows a group of students from Purdue University holding an award and paper check.
Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award during the 2025 Lunabotics Challenge.
NASA/Isaac Watson

Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award for their work. The University of Alabama placed second, followed by the University of Akron in Ohio. This award honors teams that successfully complete competition activities autonomously. It emphasizes the development and implementation of autonomous control systems in lunar robotics, reflecting real-world applications in remote and automated operations.

An Artemis I flag flown during the Nov. 16, 2022, mission was presented to the University of Illinois Chicago, as well as the University of Virginia in Charlottesville as part of the Innovation Award. The recognition is given to teams for their original ideas, creating efficiency, effective results, and solving a problem.

Dr. Eric Meloche from the College of DuPage in Glen Ellyn, Illinois, and Jennifer Erickson, professor from the Colorado School of Mines in Golden each received an Artemis Educator Award, a recognition for educators, faculty, or mentors for their time and effort inspiring students.

The University of Utah received the Effective Use of Communications Power Award and the University of Virginia the agency’s Center for Lunar and Asteroid Surface Science Award.

Picture shows college students posing for an award during the 2025 Lunabotics Challenge.
Students from the Colorado School of Mines pose for a photo after receiving a Systems Engineering Award during the 2025 Lunabotics Competition.
NASA/Isaac Watson

Students from the Colorado School of Mines placed first receiving a Systems Engineering Award. University of Virginia in Charlottesville and the College of DuPage in Glen Ellyn, Illinois, came in second and third places.

This is truly a win-win situation. The students get this amazing experience of designing, building, and testing their robots and then competing here at NASA in a lunar-like scenario while NASA gets the opportunity to study all of these different robot designs as they operate in simulated lunar soil. Lunabotics gives everyone involved new technical knowledge along with some pretty great experience.” 

Kurt Leucht

Kurt Leucht

Commentator, Lunabotics Competition and Software Development team lead

Below is a list of other awards given to students:

  • Systems Engineering Paper Award Nova Award: Liberty University in Lynchburg, Virginia; University of Virginia; College of DuPage
  • Best Use of Systems Engineering Tools: The University of Utah
  • Best Use of Reviews as Control Gates: The University of Alabama
  • Systems Engineering Paper Award Leaps and Bounds Award: The University of Miami in Florida
  • Best presentation award by a first year team: University of Buffalo in New York
  • Presentations and demonstrations awards: University of Utah, Colorado School of Mines, University of Miami

About the Author

Elyna Niles-Carnes

Elyna Niles-Carnes

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Auburn University’s project, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER),” won top prize in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum. National Institute of Aerospace A team from Auburn University took top honors in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum, where undergraduate and graduate teams competed to develop new concepts for operating on the Moon, Mars and beyond. 

      Auburn’s project, “Dynamic Ecosystems for Mars Environmental Control and Life Support Systems (ECLSS) Testing, Evaluation, and Reliability (DEMETER)” advised by Dr. Davide Guzzetti, took home top prize out of 14 Finalist Teams from academic institutions across the nation. Virginia Polytechnic Institute and State University took second place overall for their concept, “Adaptive Device for Assistance and Maintenance (ADAM),” advised by Dr. Kevin Shinpaugh. The University of Maryland took third place overall with their project, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION),” advised by Dr. David Akin, Nich Bolatto, and Charlie Hanner. 

      The first and second place overall winning teams will present their work at the 2025 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July. 

      Virginia Polytechnic Institute and State University took second place overall in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum for their concept, “Adaptive Device for Assistance and Maintenance (ADAM).”National Institute of Aerospace The RASC-AL Competition, which took place from June 2-4, 2025, in Cocoa Beach, Florida, is a unique initiative designed to bridge the gap between academia and the aerospace industry, empowering undergraduate and graduate students to apply their classroom knowledge to real-world challenges in space exploration. This year’s themes included “Sustained Lunar Evolution – An Inspirational Moment,” “Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign,” and “Small Lunar Servicing and Maintenance Robot.”  

      “The RASC-AL Competition cultivates students who bring bold, imaginative thinking to the kinds of complex challenges we tackle at NASA,” said Dan Mazanek, RASC-AL program sponsor and senior space systems engineer at NASA’s Langley Research Center in Hampton, Virginia. “These teams push the boundaries of what’s possible in space system design and offer new insights. These insights help build critical engineering capabilities, preparing the next generation of aerospace leaders to step confidently into the future of space exploration.” 

      As NASA continues to push the boundaries of space exploration, the RASC-AL Competition stands as an opportunity for aspiring aerospace professionals to design real-world solutions to complex problems facing the Agency. By engaging with the next generation of innovators, NASA can collaborate with the academic community to crowd-source new solutions for the challenges of tomorrow. 

      Additional 2025 Forum Awards include: 
      Best in Theme: Sustained Lunar Evolution: An Inspirational Moment 
      Virginia Polytechnic Institute and State University  Project Title: Project Aeneas  Advisor: Dr. Kevin Shinpaugh  Best in Theme: Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign 
      Auburn University  Project Title: Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)  Advisor: Dr. Davide Guzzetti  Best in Theme: Small Lunar Servicing and Maintenance Robot 
      Virginia Polytechnic Institute and State University  Project Title: Adaptive Device for Assistance and Maintenance (ADAM)  Advisor: Dr. Kevin Shinpaugh  Best Prototype: South Dakota State University 
      Project Title: Next-gen Operations and Versatile Assistant (NOVA)  Advisor: Dr. Todd Letcher, Allea Klauenberg, Liam Murray, Alex Schaar, Nick Sieler, Dylan Stephens, Carter Waggoner 
      RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.   

      RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.   

      For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: http://rascal.nianet.org. 

      National Institute of Aerospace
      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jun 05, 2025 Related Terms
      Exploration Systems Development Mission Directorate General Langley Research Center Explore More
      3 min read NASA Earth Scientist Elected to National Academy of Sciences
      Article 48 mins ago 3 min read I Am Artemis: Lili Villarreal
      Lili Villarreal fell in love with space exploration from an early age when her and…
      Article 1 day ago 19 min read Interview with Dave Des Marais
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Two NASA-developed technologies are key components of a new high-resolution sensor for observing wildfires: High Operating Temperature Barrier Infrared Detector (HOT-BIRD), developed with support from NASA’s Earth Science Technology Office (ESTO), and a cutting-edge Digital Readout Integrated Circuit (DROIC), developed with funding from NASA’s Small Business Innovation Research (SBIR) program.
      NASA’s c-FIRST instrument could provide high resolution data from a compact space-based platform in under an hour, making it easier for wildfire managers to detect and monitor active burns. Credit: NASA/JPL A novel space-based sensor for observing wildfires could allow first responders to monitor burns at a global scale, paving the way for future small satellite (SmallSat) constellations dedicated entirely to fire management and prevention.
      Developed with support from NASA’s Earth Science Technology Office (ESTO), the “Compact Fire Infrared Radiance Spectral Tracker” (c-FIRST) is a small, mid-wave infrared sensor that collects thermal radiation data across five spectral bands. Most traditional space-based sensors dedicated to observing fires have long revisit times, observing a scene just once over days or even weeks. The compact c-FIRST sensor could be employed in a SmallSat constellation that could observe a scene multiple times a day, providing first responders data with high spatial resolution in under an hour.
      In addition, c-FIRST’s dynamic spectral range covers the entire temperature profile of terrestrial wild fires, making it easier for first-responders to detect everything from smoldering, low-intensity fires to flaming, high intensity fires.
      “Wildfires are becoming more frequent, and not only in California. It’s a worldwide problem, and it generates tons of by-products that create very unhealthy conditions for humans,” said Sarath Gunapala, who is an Engineering Fellow at NASA’s Jet Propulsion Laboratory (JPL) and serves as Principal Investigator for c-FIRST.
      The need for space-based assets dedicated to wildfire management is severe. During the Palisade and Eaton Fires earlier this year, strong winds kept critical observation aircraft from taking to the skies, making it difficult for firefighters to monitor and track massive burns.
      Space-based sensors with high revisit rates and high spatial resolution would give firefighters and first responders a constant source of eye-in-the-sky data.
      “Ground-based assets don’t have far-away vision. They can only see a local area. And airborne assets, they can’t fly all the time. A small constellation of CubeSats could give you that constant coverage,” said Gunapala.
      c-FIRST leverages decades of sensor development at JPL to achieve its compact size and high performance. In particular, the quarter-sized High Operating Temperature Barrier Infrared Detector (HOT-BIRD), a compact infrared detector also developed at JPL with ESTO support, keeps c-FIRST small, eliminating the need for bulky cryocooler subsystems that add mass to traditional infrared sensors.
      With HOT-BIRD alone, c-FIRST could gather high-resolution images and quantitative retrievals of targets between 300°K (about 80°F) to 1000°K (about 1300°F). But when paired with a state-of-the-art Digital Readout Integrated Circuit (DROIC), c-FIRST can observe targets greater than 1600°K (about 2400°F).
      Developed by Copious Imaging LLC. and JPL with funding from NASA’s Small Business Innovation Research (SBIR) program, this DROIC features an in-pixel digital counter to reduce saturation, allowing c-FIRST to capture reliable infrared data across a broader spectral range.
      Artifical intelligence (AI) will also play a role in c-FIRST’s success. Gunapala plans to leverage AI in an onboard smart controller that parses collected data for evidence of hot spots or active burns. This data will be prioritized for downlinking, keeping first responders one step ahead of potential wildfires.
      “We wanted it to be simple, small, low cost, low power, low weight, and low volume, so that it’s ideal for a small satellite constellation,” said Gunapala.
      Gunapala and his team had a unique opportunity to test c-FIRST after the Palisade and Eaton Fires in California. Flying their instrument aboard NASA’s B-200 Super King Air, the scientists identified lingering hot spots in the Palisades and Eaton Canyon area five days after the initial burn had been contained.
      Now, the team is eyeing a path to low Earth orbit. Gunapala explained that their current prototype employs a standard desktop computer that isn’t suited for the rigors of space, and they’re working to incorporate a radiation-tolerant computer into their instrument design.
      But this successful test over Los Angeles demonstrates c-FIRST is fit for fire detection and science applications. As wildfires become increasingly common and more destructive, Gunapala hopes that this tool will help first responders combat nascent wildfires before they become catastrophes.
      “To fight these things, you need to detect them when they’re very small,” said Gunapala.
      A publication about c-FIRST appeared in the journal “Society of Photo-Optical Instrumentation Engineers” (SPIE) in March, 2023.
      For additional details, see the entry for this project on NASA TechPort.
      To learn more about emerging technologies for Earth science, visit ESTO’s open solicitations page.
      Project Lead:  Sarath Gunapala, NASA Jet Propulsion Laboratory (JPL)
      Sponsoring Organization: NASA ESTO
      Share








      Details
      Last Updated Jun 03, 2025 Related Terms
      Technology Highlights Earth Science Division Earth Science Technology Office Science-enabling Technology Explore More
      4 min read Unearthly Plumbing Required for Plant Watering in Space


      Article


      2 weeks ago
      6 min read Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station


      Article


      4 weeks ago
      4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data


      Article


      1 month ago
      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up Meteor Showers Eclipses Daily Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Planets, Solstice, and the Galaxy
      Venus and Saturn separate, while Mars hangs out in the evening. Plus the June solstice, and dark skies reveal our home galaxy in all of its glory.
      Skywatching Highlights
      All Month – Planet Visibility:
      Venus: Rises about 2 hours before the Sun in June, and shines very brightly, low in the eastern sky, in the morning all month. Mars: Visible in the west for a couple of hours after sunset all month. Drops lower in the sky as June continues, and passes very close to Regulus in the constellation Leo on June 16 and 17. (They will be about half a degree apart, or the width of the full moon.)  Jupiter: Visible quite low in the west after sunset for the first week of June, then lost in the Sun’s glare after. Will re-appear in July in the morning sky. Mercury: Becomes visible low in the west about 30 to 45 minutes after sunset in the last week and a half of June. Saturn: Rises around 3 a.m. in early June, and around 1 a.m. by the end of the month. Begins the month near Venus in the dawn sky, but rapidly pulls away, rising higher as June goes on. Daily Highlights:
      June 19 – Moon & Saturn – The third-quarter moon appears right next Saturn this morning in the hours before dawn. The pair rise in the east together around 1:30 a.m.
      June 22 – Moon & Venus – Venus rises this morning next to a slender and elegant crescent moon. Look for them in the east between about 3 a.m. and sunrise.
      June 20 – June Solstice – The June solstice is on June 20 for U.S. time zones (June 21 UTC). The Northern Hemisphere’s tilt toward the Sun is greatest on this day. This means the Sun travels its longest, highest arc across the sky all year for those north of the equator.
      June 16 & 17 – Mars & Regulus – Mars passes quite close to the bright bluish-white star Regulus, known as the “heart” of the lion constellation, Leo. They will appear about as far apart as the width of the full moon, and should be an excellent sight in binoculars or a small telescope.
      June 21-30 – Mercury becomes visible – For those with a clear view to the western horizon, Mercury becomes visible for a brief period each evening at the end of June. Look for it quite low in the sky starting 30 to 45 minutes after the Sun sets.
      All month – Mars: The Red Planet can be observed for a couple of hours after dark all month. It is noticeably dimmer than it appeared in early May, as Earth speeds away in its orbit, putting greater distance between the two worlds.
      All month – Milky Way core: The bright central bulge of our home galaxy, the Milky Way, is visible all night in June, continuing through August. It is best observed from dark sky locations far from bright city lights, and appears as a faint, cloud-like band arching across the sky toward the south.
      Transcript
      What’s Up for June? Mars grazes the lion’s heart, a connection to ancient times, and the galaxy in all its glory.
      June Planet Observing
      Starting with planet observing for this month, find Saturn and Venus in the eastern sky during the couple of hours before dawn each morning throughout the month. Saturn rapidly climbs higher in the sky each day as the month goes on. You’ll find the third quarter moon next to Saturn on the 19th, and a crescent moon next to Venus on the 22nd. 
      Sky chart showing Mercury with the crescent Moon following sunset in late June, 2025. NASA/JPL-Caltech Mercury pops up toward the end of the month. Look for it quite low in the west, just as the glow of sunset is fading. It’s highest and most visible on the 27th.
      Mars is still visible in the couple of hours after sunset toward the west, though it’s noticeably fainter than it was in early May. Over several days in mid-June, Mars passes quite close to Regulus, the bright star at the heart of the constellation Leo, the lion. Have a peek on the 16th and 17th with binoculars or a small telescope to see them as close as the width of the full moon.
      Sky chart showing Mars close to Regulus in the evening sky on June 16, 2025. NASA/JPL-Caltech Milky Way Core Season
      June means that Milky Way “Core Season” is here. This is the time of year when the Milky Way is visible as a faint band of hazy light arching across the sky all night. You just need to be under dark skies away from bright city lights to see it. What you’re looking at is the bright central core of our home galaxy, seen edge-on, from our position within the galaxy’s disk. 
      Long-exposure photos make the Milky Way’s bright stars and dark dust clouds even clearer. And while our eyes see it in visible light, NASA telescopes observe the galaxy across the spectrum — peering through dust to help us better understand our origins.
      However you observe it, getting out under the Milky Way in June is a truly remarkable way to connect with the cosmos.
      June Solstice
      June brings the summer solstice for those north of the equator, which is the winter solstice for those south of the equator. In the Northern Hemisphere, this is when the Sun is above the horizon longer than any other day, making it the longest day of the year. The situation is reversed for the Southern Hemisphere, where it’s the shortest day of the year. 
      Illustration from a NASA animation showing the tilt of Earth’s axis in June (Northern Hemisphere summer) with respect to the Sun, the planet’s orbit, and the North Star, Polaris. NASA’s Goddard Space Flight Center Earth’s tilted rotation is the culprit. The tilt is always in the same direction, with the North Pole always pointing toward Polaris, the North Star. And since that tilt stays the same, year round, when we’re on one side of the Sun in winter, the north part of the planet is tilted away from the Sun. But six months later, the planet moves halfway around its annual path, carrying us to the opposite side of Earth’s orbit, and the northern part of the planet now finds itself tilted toward the Sun. The June solstice is when this tilt is at its maximum. This is summertime for the north, bringing long days, lots more sunlight, and warmer temperatures.
      The June solstice marks a precise moment in Earth’s orbit – a consistent astronomical signpost that humans have observed for millennia. Ancient structures from Stonehenge to Chichén Itzá were built, in part, to align with the solstices, demonstrating how important these celestial events were to many cultures. 
      So whether you’re experiencing long summer days in the northern hemisphere or the brief daylight hours of winter in the south, find a quiet spot to watch the sunset on this special day and you’ll be participating in one of humanity’s oldest astronomical traditions, connecting you to observers across thousands of years of human history.
      Here are the phases of the Moon for June.
      The phases of the Moon for June 2025. You can stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
    • By Space Force
      The Department of the Air Force has opened a public comment period to detail recent updates to the background and methodology for Support of Military Families 2025 scorecards for spouse employment and public education surrounding DAF installations.
      View the full article
    • By Space Force
      In his first public speech as the 27th Secretary of the Air Force, Secretary of the Air Force Troy Meink reflected on the cadets’ time at the Academy.

      View the full article
  • Check out these Videos

×
×
  • Create New...