Members Can Post Anonymously On This Site
NASA Tests New Ways to Stick the Landing in Challenging Terrain
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. Bowman Researchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond.
Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.
Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests.
Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share
Details
Last Updated May 29, 2025 Related Terms
Langley Research Center Game Changing Development Program Space Technology Mission Directorate Explore More
3 min read Autonomous Tritium Micropowered Sensors
Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
Article 2 days ago 3 min read Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
How do we do research in zero gravity?
Actually when astronauts do experiments on the International Space Station, for instance, to environment on organisms, that environment is actually technically called microgravity. That is, things feel weightless, but we’re still under the influence of Earth’s gravity.
Now, the very microgravity that we’re trying to study up there can make experiments actually really kind of difficult for a bunch of different reasons.
First of all, stuff floats. So losing things in the ISS is a very real possibility. For example,
there was a set of tomatoes that was harvested in 2022 put it in a bag and it floated away and we couldn’t find it for eight months.
So to prevent this kind of thing from happening, we use a lot of different methods, such as using enclosed experiment spaces like glove boxes and glove bags. We use a lot of Velcro to stick stuff to.
Another issue is bubbles in liquids. So, on Earth, bubbles float up, in space they don’t float up, they’ll interfere with optical measurements or stop up your microfluidics. So space experiment equipment often includes contraptions for stopping or blocking or trapping bubbles.
A third issue is convection. So on Earth, gravity drives a process of gas mixing called convection and that helps circulate air. But without that in microgravity we worry about some of our experimental organisms and whether they’re going to get the fresh air that they need. So we might do things like adding a fan to their habitat, or if we can’t, we’ll take their habitat and put it somewhere where there might already be a fan on the ISS or in a corridor where we think they are going to be a lot of astronauts moving around and circulating the air.
Yet another issue is the fact that a lot of the laboratory instruments we use on Earth are not designed for microgravity. So to ensure that gravity doesn’t play a factor in how they work, we might do experiments on the ground where we turn them on their side or upside down, or rotate them on a rotisserie to make sure that they keep working.
So, as you can tell, for every experiment that we do on the International Space Station, there’s a whole team of scientists on the ground that has spent years developing the experiment design. And so I guess the answer to how we do research in microgravity is with a lot of practice and preparation.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated May 28, 2025 Related Terms
ISS Research Biological & Physical Sciences International Space Station (ISS) Science & Research Science Mission Directorate Explore More
2 min read Summer Students Scan the Radio Skies with SunRISE
Solar radio bursts, intense blasts of radio emission associated with solar flares, can wreak havoc…
Article 58 mins ago 3 min read NASA Interns Conduct Aerospace Research in Microgravity
The NASA Science Activation program’s STEM (Science, Technology, Engineering, and Mathematics) Enhancement in Earth Science…
Article 19 hours ago 19 min read Summary of the 2024 SAGE III/ISS Meeting
Introduction The Stratospheric Aerosol and Gas Experiment (SAGE) III/International Space Station [SAGEIII/ISS] Science Team Meeting…
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The next time astronauts land on the Moon, we will watch it in high-definition. The transmission will be in colour, digital and at up to 60 frames per second.
View the full article
-
By NASA
In collaboration with the United States Department of Agriculture, Amazon Web Services, and Colorado State University, NASA turned to students for AI-driven solutions. NASA On March 28, 80 college students filed into Colorado State University’s (CSU) Nancy Richardson Design Center to receive pizza and a challenge: design an intelligent system capable of traversing rugged terrain to provide aid in emergency scenarios.
They had 24 hours to complete this mission.
Co-led by CSU, the United States Department of Agriculture (USDA) Forest Service, and NASA, the Spring 2025 CSU Hackathon forged a symbiotic relationship between federal agencies looking for novel AI solutions and innovative students hungry for a challenge.
“One of the goals of the Career Center is to create opportunities for relationship building,” said Mika Dalton, CSU’s career center employer relations coordinator. “Events like these really help students connect with industry and identify different career pathways to expand their understanding of where their education could lead them after graduation.”
In teams of four, students chose between two technical prompts grounded in real-world data. The USDA Forest Service posed the “Uncharted Challenge,” asking teams to develop an autonomous mapping system for uncharted National Forest System roads using high-resolution satellite imagery. In the “Rover Challenge” posed by NASA, students were asked to design an algorithm that could autonomously guide a rover across rough terrain to reach an injured firefighter.
Over the next 24 hours, students analyzed lidar and satellite imagery, built algorithms, and tested their models in SageMaker, a development environment hosted by Amazon Web Services (AWS). As they collaborated on their solutions, students also helped NASA evaluate SageMaker’s potential for agency adoption.
The students’ work delivered tangible value to both agencies, demonstrating novel approaches to real operational challenges like wildfire response, terrain mapping, and emergency search and rescue.
The students did an incredible job showing how AI can solve tough problems, from navigating the Moon to handling emergencies, all in line with NASA’s mission.
Martin Garcia
NASA’s artificial intelligence and innovation lead
For the USDA, accurate and efficient trail maps can support fire crews and forest managers; for NASA, more advanced terrain navigation systems enhance efforts in AI-assisted robotics, including lunar rovers tasked with reaching astronauts or delivering supplies in critical missions. “The students’ consideration for energy efficient lunar vehicle traversal would benefit the agency’s mission to implement extended scientific and engineering missions on the lunar surface,” said NASA data scientist Andrew Wilder.
Winning teams received recognition for Best Overall Project, Ingenuity, Simplicity, and Tenacity. Prizes included letters of recommendation from agency leaders and future opportunities to present their work to NASA and Forest Service staff.
“I had a great team, and we were able to work through several setbacks with clear communication. I also got to meet professionals from NASA, USDA, Forest Service, and AWS. These were great opportunities and so I learned a lot of networking and interviewing from them,” said one participating CSU student.
Ultimately, 98% of post-event student survey respondents indicated a strong enthusiasm to share this event with other students. Along with the endorsement, students shared that it was a great way to learn skills, network, and try something new. Many respondents, while strongly recommending the event, emphasized that the event was very challenging, intense, and a place to apply classroom knowledge.
The hackathon demonstrated what’s possible when creativity, passion, and partnership align. For NASA’s Chief AI Officer (CAIO), it offered a clear proof of concept: a low-cost, high-impact model for advancing AI adoption by connecting real-world challenges with emerging talent. Beyond the technical outputs, NASA gained testable solutions, valuable insights into rapid prototyping, and deeper relationships with federal, academic, and industry partners. The hackathon also provided a repeatable framework for future events with other institutions.
By bringing together mission teams, partners, and student innovators—and fueling them with pizza and friendly competition—NASA is accelerating innovation in bold, creative ways.
Keep Exploring Discover More Topics From NASA
NASA STEM Opportunities and Activities For Students
For Colleges and Universities
Partnering with NASA STEM Engagement
About STEM Engagement at NASA
View the full article
-
By NASA
5 min read
Percolating Clues: NASA Models New Way to Build Planetary Cores
NASA’s Perseverance rover was traveling in the channel of an ancient river, Neretva Vallis, when it captured this view of an area of scientific interest nicknamed “Bright Angel” – the light-toned area in the distance at right. The area features light-toned rocky outcrops that may represent either ancient sediment that later filled the channel or possibly much older rock that was subsequently exposed by river erosion. NASA/JPL-Caltech A new NASA study reveals a surprising way planetary cores may have formed—one that could reshape how scientists understand the early evolution of rocky planets like Mars.
Conducted by a team of early-career scientists and long-time researchers across the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston, the study offers the first direct experimental and geochemical evidence that molten sulfide, rather than metal, could percolate through solid rock and form a core—even before a planet’s silicate mantle begins to melt.
For decades, scientists believed that forming a core required large-scale melting of a planetary body, followed by heavy metallic elements sinking to the center. This study introduces a new scenario—especially relevant for planets forming farther from the Sun, where sulfur and oxygen are more abundant than iron. In these volatile-rich environments, sulfur behaves like road salt on an icy street—it lowers the melting point by reacting with metallic iron to form iron-sulfide so that it may migrate and combine into a core. Until now, scientists didn’t know if sulfide could travel through solid rock under realistic planet formation conditions.
Working on this project pushed us to be creative. It was exciting to see both data streams converge on the same story.
Dr. Jake Setera
ARES Scientist with Amentum
The study results gave researchers a way to directly observe this process using high-resolution 3D imagery—confirming long-standing models about how core formation can occur through percolation, in which dense liquid sulfide travels through microscopic cracks in solid rock.
“We could actually see in full 3D renderings how the sulfide melts were moving through the experimental sample, percolating in cracks between other minerals,” said Dr. Sam Crossley of the University of Arizona in Tucson, who led the project while a postdoctoral fellow with NASA Johnson’s ARES Division. “It confirmed our hypothesis—that in a planetary setting, these dense melts would migrate to the center of a body and form a core, even before the surrounding rock began to melt.”
Recreating planetary formation conditions in the lab required not only experimental precision but also close collaboration among early-career scientists across ARES to develop new ways of observing and analyzing the results. The high-temperature experiments were first conducted in the experimental petrology lab, after which the resulting samples—or “run products”—were brought to NASA Johnson’s X-ray computed tomography (XCT) lab for imaging.
A molten sulfide network (colored gold) percolates between silicate mineral grains in this cut-out of an XCT rendering—rendered are unmelted silicates in gray and sulfides in white. Credit: Crossley et al. 2025, Nature Communications X-ray scientist and study co-author Dr. Scott Eckley of Amentum at NASA Johnson used XCT to produce high-resolution 3D renderings—revealing melt pockets and flow pathways within the samples in microscopic detail. These visualizations offered insight into the physical behavior of materials during early core formation without destroying the sample.
The 3D XCT visualizations initially confirmed that sulfide melts could percolate through solid rock under experimental conditions, but that alone could not confirm whether percolative core formation occurred over 4.5 billion years ago. For that, researchers turned to meteorites.
“We took the next step and searched for forensic chemical evidence of sulfide percolation in meteorites,” Crossley said. “By partially melting synthetic sulfides infused with trace platinum-group metals, we were able to reproduce the same unusual chemical patterns found in oxygen-rich meteorites—providing strong evidence that sulfide percolation occurred under those conditions in the early solar system.”
To understand the distribution of trace elements, study co-author Dr. Jake Setera, also of Amentum, developed a novel laser ablation technique to accurately measure platinum-group metals, which concentrate in sulfides and metals.
“Working on this project pushed us to be creative,” Setera said. “To confirm what the 3D visualizations were showing us, we needed to develop an appropriate laser ablation method that could trace the platinum group-elements in these complex experimental samples. It was exciting to see both data streams converge on the same story.”
When paired with Setera’s geochemical analysis, the data provided powerful, independent lines of evidence that molten sulfide had migrated and coalesced within a solid planetary interior. This dual confirmation marked the first direct demonstration of the process in a laboratory setting.
Dr. Sam Crossley welds shut the glass tube of the experimental assembly. To prevent reaction with the atmosphere and precisely control oxygen and sulfur content, experiments needed to be sealed in a closed system under vacuum. Credit: Amentum/Dr. Brendan Anzures The study offers a new lens through which to interpret planetary geochemistry. Mars in particular shows signs of early core formation—but the timeline has puzzled scientists for years. The new results suggest that Mars’ core may have formed at an earlier stage, thanks to its sulfur-rich composition—potentially without requiring the full-scale melting that Earth experienced. This could help explain longstanding puzzles in Mars’ geochemical timeline and early differentiation.
The results also raise new questions about how scientists date core formation events using radiogenic isotopes, such as hafnium and tungsten. If sulfur and oxygen are more abundant during a planet’s formation, certain elements may behave differently than expected—remaining in the mantle instead of the core and affecting the geochemical “clocks” used to estimate planetary timelines.
This research advances our understanding of how planetary interiors can form under different chemical conditions—offering new possibilities for interpreting the evolution of rocky bodies like Mars. By combining experimental petrology, geochemical analysis, and 3D imaging, the team demonstrated how collaborative, multi-method approaches can uncover processes that were once only theoretical.
Crossley led the research during his time as a McKay Postdoctoral Fellow—a program that recognizes outstanding early-career scientists within five years of earning their doctorate. Jointly offered by NASA’s ARES Division and the Lunar and Planetary Institute in Houston, the fellowship supports innovative research in astromaterials science, including the origin and evolution of planetary bodies across the solar system.
As NASA prepares for future missions to the Moon, Mars, and beyond, understanding how planetary interiors form is more important than ever. Studies like this one help scientists interpret remote data from spacecraft, analyze returned samples, and build better models of how our solar system came to be.
For more information on NASA’s ARES division, visit: https://ares.jsc.nasa.gov/
Victoria Segovia
NASA’s Johnson Space Center
281-483-5111
victoria.segovia@nasa.gov
Share
Details
Last Updated May 22, 2025 Related Terms
Astromaterials Planetary Science Planetary Science Division The Solar System Explore More
6 min read NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
Article
2 hours ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
1 week ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Planetary Science Stories
Astromaterials
Latest NASA Science News
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.