Jump to content

NASA Interns Conduct Aerospace Research in Microgravity


Recommended Posts

  • Publishers
Posted

3 min read

NASA Interns Conduct Aerospace Research in Microgravity

The NASA Science Activation program’s STEM (Science, Technology, Engineering, and Mathematics) Enhancement in Earth Science (SEES) Summer Intern Program, hosted by the University of Texas Center for Space Research, continues to expand opportunities for high school students to engage in authentic spaceflight research. As part of the SEES Microgravity Research initiative, four interns were selected to fly with their experiments in microgravity aboard the ZERO-G parabolic aircraft. The students had 11 minutes of weightlessness over 30 parabolas in which to conduct their experiments.

This immersive experience was made possible through a collaboration between SEES, Space for Teachers, the Wisconsin Space Grant Consortium, and the International Space Station National Laboratory (CASIS). Together, these partners provide students with access to industry-aligned training and direct experience in aerospace experiment design, testing, and integration.

Congratulations to the 2025 SEES Microgravity Research Team:

  • Charlee Chandler, 11th grade, Rehobeth High School (Dothan, AL): Galvanic Vestibular Stimulation (GVS) and Vestibular-Ocular Reflex (VOR) in Microgravity
  • Aya Elamrani-Zerifi, 11th grade, Hereford High School (Parkton, MD): Thermocapillary-Induced Bubble Dynamics
  • Lily Myers, 12th grade, Eastlake High School (Sammamish, WA): Propellant Slosh Damping Using Polyurethane Foam
  • Nathan Scalf 11th grade, Lexington Christian Academy (Lexington, KY): Wound Irrigation System for Microgravity

Selected from nearly 100 proposals submitted by 2024 SEES interns, these four students spent months preparing for flight through weekly technical mentorship and structured milestones. Their training included proposal development, design reviews, safety assessments, hardware testing, and a full payload integration process, working through engineering protocols aligned with industry and mission standards.

In addition to their individual experiments, the students also supported the flight of 12 team-designed experiments integrated into the ZQube platform, a compact research carrier co-developed by Twiggs Space Lab, Space for Teachers, and NASA SEES. The ZQube enables over 150 SEES interns from across the country to contribute to microgravity investigations. Each autonomous experiment includes onboard sensors, cameras, and transparent test chambers, returning valuable video and sensor data for post-flight analysis.

This microgravity research opportunity supports the broader SEES mission to prepare students for careers in aerospace, spaceflight engineering, and scientific research. Through direct engagement with NASA scientists, academic mentors, and commercial aerospace experts, students gain real-world insight into systems engineering and the technical disciplines needed in today’s space industry.

The SEES summer intern program is a nationally competitive STEM experience for 10th-11th grade high school students. Interns learn how to interpret NASA satellite data while working with scientists and engineers in their chosen area of work, including astronomy, remote sensing, and space geodetic techniques to help understand Earth systems, natural hazards, and climate. It is supported by NASA under cooperative agreement award number NNH15ZDA004C and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/

A young man in a navy blue flight suit floats inside a microgravity simulation aircraft, smiling as he demonstrates a Wound Irrigation System using two syringes and a small device. The padded interior of the aircraft is visible behind him, along with logos for Zero-G and NASA SEES on the wall. He appears weightless, mid-air, during a parabolic flight aboard the ZERO-G G-FORCE ONE®.
Nathan Scalf, one of four NASA SEES interns, from Lexington KY, tests his Wound Irrigation System for Microgravity experiment aboard the ZERO-G G-FORCE ONE® in May 2025.
Steve Boxall, ZERO-G

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advancing new hazard detection and precision landing technologies to help future space missions successfully achieve safe and soft landings is a critical area of space research and development, particularly for future crewed missions. To support this, NASA’s Space Technology Mission Directorate (STMD) is pursuing a regular cadence of flight testing on a variety of vehicles, helping researchers rapidly advance these critical systems for missions to the Moon, Mars, and beyond.  
      “These flight tests directly address some of NASA’s highest-ranked technology needs, or shortfalls, ranging from advanced guidance algorithms and terrain-relative navigation to lidar-and optical-based hazard detection and mapping,” said Dr. John M. Carson III, STMD technical integration manager for precision landing and based at NASA’s Johnson Space Center in Houston. 
      Since the beginning of this year, STMD has supported flight testing of four precision landing and hazard detection technologies from many sectors, including NASA, universities, and commercial industry. These cutting-edge solutions have flown aboard a suborbital rocket system, a high-speed jet, a helicopter, and a rocket-powered lander testbed. That’s four precision landing technologies tested on four different flight vehicles in four months. 
      “By flight testing these technologies on Earth in spaceflight-relevant trajectories and velocities, we’re demonstrating their capabilities and validating them with real data for transitioning technologies from the lab into mission applications,” said Dr. Carson. “This work also signals to industry and other partners that these capabilities are ready to push beyond NASA and academia and into the next generation of Moon and Mars landers.” 
      The following NASA-supported flight tests took place between February and May: 
      Suborbital Rocket Test of Vision-Based Navigation System  
      Identifying landmarks to calculate accurate navigation solutions is a key function of Draper’s Multi-Environment Navigator (DMEN), a vision-based navigation and hazard detection technology designed to improve safety and precision of lunar landings.  
      Aboard Blue Origin’s New Shepard reusable suborbital rocket system, DMEN collected real-world data and validated its algorithms to advance it for use during the delivery of three NASA payloads as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. On Feb. 4, DMEN performed the latest in a series of tests supported by NASA’s Flight Opportunities program, which is managed at NASA’s Armstrong Flight Research Center in Edwards, California. 
      During the February flight, which enabled testing at rocket speeds on ascent and descent, DMEN scanned the Earth below, identifying landmarks to calculate an accurate navigation solution. The technology achieved accuracy levels that helped Draper advance it for use in terrain-relative navigation, which is a key element of landing on other planets. 
      New Shepard booster lands during the flight test on February 4, 2025.Blue Origin High-Speed Jet Tests of Lidar-Based Navigation  
      Several highly dynamic maneuvers and flight paths put Psionic’s Space Navigation Doppler Lidar (PSNDL) to the test while it collected navigation data at various altitudes, velocities, and orientations.  
      Psionic licensed NASA’s Navigation Doppler Lidar technology developed at Langley Research Center in Hampton, Virginia, and created its own miniaturized system with improved functionality and component redundancies, making it more rugged for spaceflight. In February, PSNDL along with a full navigation sensor suite was mounted aboard an F/A-18 Hornet aircraft and underwent flight testing at NASA Armstrong.  
      The aircraft followed a variety of flight paths over several days, including a large figure-eight loop and several highly dynamic maneuvers over Death Valley, California. During these flights, PSNDL collected navigation data relevant for lunar and Mars entry and descent.  
      The high-speed flight tests demonstrated the sensor’s accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. These recent tests complemented previous Flight Opportunities-supported testing aboard a lander testbed to advance earlier versions of their PSNDL prototypes. 
      The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of a NASA F/A-18 research aircraft for flight testing above Death Valley near NASA’s Armstrong Flight Research Center in Edwards, California, in February 2025.NASA Helicopter Tests of Real-Time Mapping Lidar  
      Researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, developed a state-of-the-art Hazard Detection Lidar (HDL) sensor system to quickly map the surface from a vehicle descending at high speed to find safe landing sites in challenging locations, such as Europa (one of Jupiter’s moons), our own Moon, Mars, and other planetary bodies throughout the solar system. The HDL-scanning lidar generates three-dimensional digital elevation maps in real time, processing approximately 15 million laser measurements and mapping two football fields’ worth of terrain in only two seconds.  
      In mid-March, researchers tested the HDL from a helicopter at NASA’s Kennedy Space Center in Florida, with flights over a lunar-like test field with rocks and craters. The HDL collected numerous scans from several different altitudes and view angles to simulate a range of landing scenarios, generating real-time maps. Preliminary reviews of the data show excellent performance of the HDL system. 
      The HDL is a component of NASA’s Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE) technology suite. The SPLICE descent and landing system integrates multiple component technologies, such as avionics, sensors, and algorithms, to enable landing in hard-to-reach areas of high scientific interest. The HDL team is also continuing to test and further improve the sensor for future flight opportunities and commercial applications. 
      NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. Lander Tests of Powered-Descent Guidance Software  
      Providing pinpoint landing guidance capability with minimum propellant usage, the San Diego State University (SDSU) powered-descent guidance algorithms seek to improve autonomous spacecraft precision landing and hazard avoidance. During a series of flight tests in April and May, supported by NASA’s Flight Opportunities program, the university’s software was integrated into Astrobotic’s Xodiac suborbital rocket-powered lander via hardware developed by Falcon ExoDynamics as part of NASA TechLeap Prize’s Nighttime Precision Landing Challenge.  
      The SDSU algorithms aim to improve landing capabilities by expanding the flexibility and trajectory-shaping ability and enhancing the propellant efficiency of powered-descent guidance systems. They have the potential for infusion into human and robotic missions to the Moon as well as high-mass Mars missions.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      As part of a series of tethered and free-flight tests in April and May 2025, algorithms developed by San Diego State University guided the descent of the Xodiac lander testbed vehicle.Astrobotic By advancing these and other important navigation, precision landing, and hazard detection technologies with frequent flight tests, NASA’s Space Technology Mission Directorate is prioritizing safe and successful touchdowns in challenging planetary environments for future space missions.  
      Learn more:  https://www.nasa.gov/space-technology-mission-directorate/  
      By: Lee Ann Obringer
      NASA’s Flight Opportunities program
      Facebook logo @NASATechnology @NASA_Technology Explore More
      2 min read NASA Langley Uses Height, Gravity to Test Long, Flexible Booms
      Article 4 hours ago 3 min read Autonomous Tritium Micropowered Sensors
      Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
      Article 2 days ago Keep Exploring Discover More …
      Space Technology Mission Directorate
      Flight Opportunities
      Moon
      These two printable STL files demonstrate the differences between the near and far side of Earth’s Moon. The near side…
      Technology
      Share
      Details
      Last Updated May 29, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Armstrong Flight Research Center Flight Opportunities Program Technology Technology for Space Travel View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. Bowman Researchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond. 

      Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.  

      Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests. 

      Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share
      Details
      Last Updated May 29, 2025 Related Terms
      Langley Research Center Game Changing Development Program Space Technology Mission Directorate Explore More
      3 min read Autonomous Tritium Micropowered Sensors
      Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
      Article 2 days ago 3 min read Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      How do we do research in zero gravity?

      Actually when astronauts do experiments on the International Space Station, for instance, to environment on organisms, that environment is actually technically called microgravity. That is, things feel weightless, but we’re still under the influence of Earth’s gravity.

      Now, the very microgravity that we’re trying to study up there can make experiments actually really kind of difficult for a bunch of different reasons.

      First of all, stuff floats. So losing things in the ISS is a very real possibility. For example,
      there was a set of tomatoes that was harvested in 2022 put it in a bag and it floated away and we couldn’t find it for eight months.

      So to prevent this kind of thing from happening, we use a lot of different methods, such as using enclosed experiment spaces like glove boxes and glove bags. We use a lot of Velcro to stick stuff to.

      Another issue is bubbles in liquids. So, on Earth, bubbles float up, in space they don’t float up, they’ll interfere with optical measurements or stop up your microfluidics. So space experiment equipment often includes contraptions for stopping or blocking or trapping bubbles.

      A third issue is convection. So on Earth, gravity drives a process of gas mixing called convection and that helps circulate air. But without that in microgravity we worry about some of our experimental organisms and whether they’re going to get the fresh air that they need. So we might do things like adding a fan to their habitat, or if we can’t, we’ll take their habitat and put it somewhere where there might already be a fan on the ISS or in a corridor where we think they are going to be a lot of astronauts moving around and circulating the air.

      Yet another issue is the fact that a lot of the laboratory instruments we use on Earth are not designed for microgravity. So to ensure that gravity doesn’t play a factor in how they work, we might do experiments on the ground where we turn them on their side or upside down, or rotate them on a rotisserie to make sure that they keep working.

      So, as you can tell, for every experiment that we do on the International Space Station, there’s a whole team of scientists on the ground that has spent years developing the experiment design. And so I guess the answer to how we do research in microgravity is with a lot of practice and preparation.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 28, 2025 Related Terms
      ISS Research Biological & Physical Sciences International Space Station (ISS) Science & Research Science Mission Directorate Explore More
      2 min read Summer Students Scan the Radio Skies with SunRISE
      Solar radio bursts, intense blasts of radio emission associated with solar flares, can wreak havoc…
      Article 58 mins ago 3 min read NASA Interns Conduct Aerospace Research in Microgravity
      The NASA Science Activation program’s STEM (Science, Technology, Engineering, and Mathematics) Enhancement in Earth Science…
      Article 19 hours ago 19 min read Summary of the 2024 SAGE III/ISS Meeting
      Introduction The Stratospheric Aerosol and Gas Experiment (SAGE) III/International Space Station [SAGEIII/ISS] Science Team Meeting…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      How Do We Do Research in Zero Gravity? We Asked a NASA Expert
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A digital rendering of the NASA-supported commercial space station, Vast’s Haven-1, which will provide a microgravity environment for crew, research, and in-space manufacturing.Vast NASA-supported commercial space station, Vast’s Haven-1, recently completed a test of a critical air filter system for keeping future astronauts healthy in orbit. Testing confirmed the system can maintain a safe and healthy atmosphere for all planned Haven-1 mission phases.
      Testing of the trace contaminant control system was completed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of a reimbursable Space Act Agreement. Vast also holds an unfunded Space Act Agreement with NASA as part of the second Collaborations for Commercial Space Capabilities initiative.
      Adrian Johnson, air chemist at NASA’s Marshall Space Flight Center in Huntsville, Alabama, operates the Micro-GC, which is used to measure carbon monoxide levels, during a trace contaminant control system test in the environmental chamber.NASA The subsystem of the environmental control and life support system is comprised of various filters designed to scrub hazardous chemicals produced by both humans and materials on the commercial station. During the test, a representative chemical environment was injected into a sealed environmental chamber, and the filtration system was turned on to verify the trace contaminant control system could maintain a healthy atmosphere.
      “Testing of environmental control systems and subsystems is critical to ensure the health and safety of future commercial space station crews,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Through NASA’s agreements with Vast and our other industry partners, the agency is contributing technical expertise, technologies, services, and facilities to support companies in the development of commercial stations while providing NASA important insight into the development and readiness to support future agency needs and services in low Earth orbit.”
      NASA-supported commercial space station, Vast’s Haven-1, trace contaminant control filters and support hardware pictured within the environmental chamber at the agency’s Marshall Space Flight Center, Huntsville, Alabama.NASA Experts used the same environmental chamber at Marshall to test the International Space Station environmental control and life support system.
      The knowledge and data gained during the recent testing will help validate Vast’s Haven-1 and support future Haven-2 development.
      NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. NASA plans to procure services from one or more companies following the design and development phase as part of the agency’s strategy to become one of many customers for low Earth orbit stations.
      For more information about commercial space stations, visit:
      www.nasa.gov/commercialspacestations
      Keep Exploring Discover More Topics
      Commercial Space Stations in Low Earth Orbit
      NASA is supporting the development of commercially owned and operated space stations in low Earth orbit from which the agency,…
      Low Earth Orbit Economy
      Commercial Crew Program
      NASA’s Low Earth Orbit Microgravity Strategy
      View the full article
  • Check out these Videos

×
×
  • Create New...