Members Can Post Anonymously On This Site
Mars Roundtrip Success Enabled by Integrated Cooling through Inductively Coupled LED Emission (MaRS ICICLE)
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Auburn University’s project, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER),” won top prize in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum. National Institute of Aerospace A team from Auburn University took top honors in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum, where undergraduate and graduate teams competed to develop new concepts for operating on the Moon, Mars and beyond.
Auburn’s project, “Dynamic Ecosystems for Mars Environmental Control and Life Support Systems (ECLSS) Testing, Evaluation, and Reliability (DEMETER)” advised by Dr. Davide Guzzetti, took home top prize out of 14 Finalist Teams from academic institutions across the nation. Virginia Polytechnic Institute and State University took second place overall for their concept, “Adaptive Device for Assistance and Maintenance (ADAM),” advised by Dr. Kevin Shinpaugh. The University of Maryland took third place overall with their project, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION),” advised by Dr. David Akin, Nich Bolatto, and Charlie Hanner.
The first and second place overall winning teams will present their work at the 2025 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July.
Virginia Polytechnic Institute and State University took second place overall in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum for their concept, “Adaptive Device for Assistance and Maintenance (ADAM).”National Institute of Aerospace The RASC-AL Competition, which took place from June 2-4, 2025, in Cocoa Beach, Florida, is a unique initiative designed to bridge the gap between academia and the aerospace industry, empowering undergraduate and graduate students to apply their classroom knowledge to real-world challenges in space exploration. This year’s themes included “Sustained Lunar Evolution – An Inspirational Moment,” “Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign,” and “Small Lunar Servicing and Maintenance Robot.”
“The RASC-AL Competition cultivates students who bring bold, imaginative thinking to the kinds of complex challenges we tackle at NASA,” said Dan Mazanek, RASC-AL program sponsor and senior space systems engineer at NASA’s Langley Research Center in Hampton, Virginia. “These teams push the boundaries of what’s possible in space system design and offer new insights. These insights help build critical engineering capabilities, preparing the next generation of aerospace leaders to step confidently into the future of space exploration.”
As NASA continues to push the boundaries of space exploration, the RASC-AL Competition stands as an opportunity for aspiring aerospace professionals to design real-world solutions to complex problems facing the Agency. By engaging with the next generation of innovators, NASA can collaborate with the academic community to crowd-source new solutions for the challenges of tomorrow.
Additional 2025 Forum Awards include:
Best in Theme: Sustained Lunar Evolution: An Inspirational Moment
Virginia Polytechnic Institute and State University Project Title: Project Aeneas Advisor: Dr. Kevin Shinpaugh Best in Theme: Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign
Auburn University Project Title: Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER) Advisor: Dr. Davide Guzzetti Best in Theme: Small Lunar Servicing and Maintenance Robot
Virginia Polytechnic Institute and State University Project Title: Adaptive Device for Assistance and Maintenance (ADAM) Advisor: Dr. Kevin Shinpaugh Best Prototype: South Dakota State University
Project Title: Next-gen Operations and Versatile Assistant (NOVA) Advisor: Dr. Todd Letcher, Allea Klauenberg, Liam Murray, Alex Schaar, Nick Sieler, Dylan Stephens, Carter Waggoner
RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.
RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.
For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: http://rascal.nianet.org.
National Institute of Aerospace
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Jun 05, 2025 Related Terms
Exploration Systems Development Mission Directorate General Langley Research Center Explore More
3 min read NASA Earth Scientist Elected to National Academy of Sciences
Article 48 mins ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 1 day ago 19 min read Interview with Dave Des Marais
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification Testing
Verifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering Test
Teams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications Testing
Integrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration Test
Teams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End Test
Test to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress Rehearsal
Teams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
View the full article
-
By NASA
After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.
Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”
Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.
Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.
“It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”
While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.
“It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”
To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.
The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.
The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.
“These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.
The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.
The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.
More information on NASA’s MAVEN mission
By Willow Reed
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
Media Contacts:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Share
Details
Last Updated May 28, 2025 Related Terms
MAVEN (Mars Atmosphere and Volatile EvolutioN) Mars Planets View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Perseverance took this selfie on May 10, 2025. The small dark hole in the rock in front of the rover is the borehole made when Perseverance collected its latest sample. The small puff of dust left of center and below the horizon line is a dust devil.NASA/JPL-Caltech/MSSS The rover took the image — its fifth since landing in February 2021 — between stops investigating the Martian surface.
A Martian dust devil photobombed NASA’s Perseverance Mars rover as it took a selfie on May 10 to mark its 1,500th sol (Martian day) exploring the Red Planet. At the time, the six-wheeled rover was parked in an area nicknamed “Witch Hazel Hill,” an area on Jezero Crater’s rim that the rover has been exploring over the past five months.
“The rover self-portrait at the Witch Hazel Hill area gives us a great view of the terrain and the rover hardware,” said Justin Maki, Perseverance imaging lead at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “The well-illuminated scene and relatively clear atmosphere allowed us to capture a dust devil located 3 miles to the north in Neretva Vallis.”
The selfie also gives the engineering teams a chance to view and assess the state of the rover, its instruments, and the overall dust accumulation as Perseverance reached the 1,500-sol milestone. (A day on Mars is 24.6 hours, so 1,500 sols equals 1,541 Earth days.)
Fifty-nine individual images went into the creation of this Perseverance rover selfie. NASA/JPL-Caltech/MSSS The bright light illuminating the scene is courtesy of the high angle of the Sun at the time the images composing the selfie were taken, lighting up Perseverance’s deck and casting its shadow below and behind the chassis. Immediately in front of the rover is the “Bell Island” borehole, the latest sampling location in the Witch Hazel Hill area.
How Perseverance Did It
This newest selfie, Perseverance’s fifth since the mission began, was stitched together on Earth from a series of 59 images collected by the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera at the end of the robotic arm. It shows the rover’s remote sensing mast looking into the camera. To generate the version of the selfie with the mast looking at the borehole, WATSON took three additional images, concentrating on the reoriented mast.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A dust devil also whirled by in the distance as one of the hazard-avoidance cameras on NASA’s Perseverance captured the Mars rover coring a sample near the rim of Jezero Crater on April 29, 2025, the 1,490th Martian day, or sol, of the mission.NASA/JPL-Caltech “To get that selfie look, each WATSON image has to have its own unique field of view,” said Megan Wu, a Perseverance imaging scientist from Malin Space Science Systems in San Diego. “That means we had to make 62 precision movements of the robotic arm. The whole process takes about an hour, but it’s worth it. Having the dust devil in the background makes it a classic. This is a great shot.”
Mars Report: Perseverance Catches Dancing Devils The dust covering the rover is visual evidence of the rover’s journey on Mars: By the time the image was captured, Perseverance had abraded and analyzed a total of 37 rocks and boulders with its science instruments, collected 26 rock cores (25 sealed and 1 left unsealed), and traveled more than 22 miles (36 kilometers).
“After 1,500 sols, we may be a bit dusty, but our beauty is more than skin deep,” said Art Thompson, Perseverance project manager at JPL. “Our multi-mission radioisotope thermoelectric generator is giving us all the power we need. All our systems and subsystems are in the green and clicking along, and our amazing instruments continue to provide data that will feed scientific discoveries for years to come.”
The rover is currently exploring along the western rim of Jezero Crater, at a location the science team calls “Krokodillen.”
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-073
Share
Details
Last Updated May 21, 2025 Related Terms
Perseverance (Rover) Jet Propulsion Laboratory Mars Mars 2020 Explore More
5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
Article 6 days ago 6 min read NASA Observes First Visible-light Auroras at Mars
On March 15, 2024, near the peak of the current solar cycle, the Sun produced…
Article 7 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA/JPL-Caltech/Texas A&M/Cornell NASA’s Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars 20 years ago. In this image, the bluish glow in the sky above the Sun would be visible to us if we were there, but an artifact of the panoramic camera’s infrared imaging capabilities is that with this filter combination, the redness of the sky farther from the sunset is exaggerated compared to the daytime colors of the Martian sky.
Read more about this photo.
Image credit: NASA/JPL-Caltech/Texas A&M/Cornell
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.