Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

19 min read

Summary of the 2024 SAGE III/ISS Meeting

Introduction

The Stratospheric Aerosol and Gas Experiment (SAGE) III/International Space Station [SAGEIII/ISS] Science Team Meeting (STM) took place on October 22–23, 2024, in a hybrid format. Approximately 50 scientists attended in person at NASA’s Langley Research Center (LaRC) – see Photo. Participants included researchers from U.S. universities, NASA LaRC, NASA’s Goddard Space Flight Center (GSFC), the NASA/Jet Propulsion Laboratory (JPL), and National Oceanic and Atmospheric Administration (NOAA) laboratories. Speakers from Canada and Germany also attended.

The history of the SAGE missions, the development and accomplishments of the SAGE III/ISS mission, and a summary of the 2022 STM appear in a previous article –  see “Summary of the SAGE III/ISS Science Team Meeting,” in The Earth Observer, May–June 2023, 35:3, 11–18.

This article will summarize the content and key outcomes from the 2024 STM. The full agenda and presentations can be viewed at the SAGE III/ISS website. To access the presentations, use the link provided, then click on the Science Team tab and scroll about halfway down the page to find the 2024 meeting where they are listed.

SAGE 3 photo
Photo. Group photo of the in-person attendees of the SAGE III/ISS science team meeting, which took place at NASA’s Langley Research Center October 22–23, 2024.
Photo Credit: NASA

DAY ONE

Jun Wang [University of Iowa—SAGE III/ISS Science Team Leader] and David Flittner [LaRC—SAGE III/ISS Project Scientist] kicked off the STM. The pair welcomed all participants and invited Richard Eckman [NASA Headquarters (HQ)—SAGE III/ISS Program Scientist, now emeritus (as of January 1, 2025)] to deliver opening remarks. Allison McMahon [LaRC/Science Systems and Applications, Inc. (SSAI)—SAGE III/ISS Communications Lead] then spoke and provided logistical details for the meeting.

The morning sessions focused on project updates and the synergy between SAGE III/ISS and future missions currently in the planning phase, with potential launches in the early 2030s. The afternoon sessions were dedicated to aerosol research and the calibration/validation of SAGE III/ISS data products.

Project Operation and Data Product Briefing

David Flittner presented an update of the mission status, with over seven years and counting of data collection/analysis/release. SAGE III/ISS went through the 2023 Earth Science Senior Review (see page 15 of linked document for specific summary of the SAGE III/ISS results), and NASA HQ approved the proposal for continued operations for 2024–2026, with partial, overguide (i.e., above baseline request) funding approved to support community validation efforts, e.g., developing online quick look tools – see Figure 1 – and timely algorithm and product improvements. However, some reduction in mission staff and reorganization of work assignments have had to occur to stay within the allotted budget.

Overall, Flittner described 2024 as “a year of growth” for many on the SAGE III/ISS Team. He referenced important mission activities planned during the current three-year tenure of the new Science Team cohort. This work includes supporting the 2026 World Meteorological Organization (WMO) International Ozone assessment with a release of improved solar/lunar product in early 2025, examination of product sensitivities to variable aerosol loadings, introduction of a research product with retrieved temperature and pressure profiles, and continuing a much sought-after summer internship program.

SAGE 3 figure 1
Figure 1. An example of an enhanced tool for the community to visualize SAGE III/ISS data validation.
Figure Credit: Mary Cate McKee [LaRC]

Robbie Manion [LaRC] presented version 6.0 (V6) of the SAGE III/ISS data products, which were released in April 2025. Owing to a change in source ozone (O3) cross sections, this version will resolve the longstanding low bias in retrieved aerosol extinction around 600 nm. As a result, some changes in the downstream data products for inferred particle size distribution and aerosol/cloud categorization are expected. In addition, V6 will allow for recovery of hundreds of profiles previously impeded by the recent proliferation of sunspots.

Jamie Nehrir [LaRC] stated that SAGE III celebrated its seventh year onboard the ISS on February 19, 2024. [UPDATE: As of this publication, SAGE III/ISS has now passed eight years in orbit.] The payload continues to operate nominally surpassing 70,000 occultation events successfully acquired. Nehrir reported that SAGE III was not affected by the October 9, 2023, external leak from the Russian Nauka (or Multipurpose Laboratory) Module. However, the Disturbance Monitoring Package (DMP) lasers for the y- and z-axes on the instrument have been degrading. The operations team has been in a healthy dialog with the science and processing teams and external partners to determine the potential impact of these degradations on payload performance and on any ISS activities that could affect the science.

Invited Presentations on Synergy with New Limb Missions in Formulation

Lyatt Jaeglé [University of Washington] presented the mission concept for the Stratosphere Troposphere Response using Infrared Vertically-resolved light Explorer (STRIVE), which was recently selected for a competitive Phase A Concept Study within NASA’s 2023 Earth System Explorers Program (an element of the 2017–2027 Earth Science Decadal Survey). STRIVE fills a critical need for high vertical [1 km (0.6 mi)] resolution profiles of temperature, O3, trace gases, aerosols, and clouds in the upper troposphere–stratosphere (UTS). The system will provide near-global coverage and unparalleled horizontal sampling, producing 400,000 profiles each day. STRIVE will carry two synergistic instruments: a limb-scanning, infrared-imaging Dyson spectrometer to retrieve profiles of temperature, water vapor, trace gas concentrations, aerosol extinction, and cloud properties during day and night; and a dual-spectral, multi-directional, limb-profiling radiometer that retrieves detailed aerosol properties during day.

Björn-Martin Sinnhuber [Karlsruhe Institute of Technology, Germany] gave an overview of the Changing-Atmosphere Infrared Tomography Explorer (CAIRT), a candidate mission for the upcoming European Space Agency (ESA) Earth Explorer 11 satellite. If selected, CAIRT would provide passive infrared limb imaging of atmospheric temperature and trace constituents from the upper troposphere at about 5 km (3 mi) altitude up to the lower thermosphere at 115 km (71 mi) altitude. The presentation highlighted how these observations can provide information on how atmospheric gravity waves drive middle atmosphere circulation, age-of-air in the middle atmosphere, the descent of nitrogen oxides (Nox) from the thermosphere into the stratosphere, as well as the detection of sulfur species and sulfate (SO42-) aerosols in the stratosphere.

Aerosols

Mahesh Mundakkara [LaRC] presented the research used to generate the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) product, a critical resource for analyzing and modeling the climatic effects of stratospheric aerosols. His presentation focused on assessing the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP) by comparing its data with other datasets, particularly SAGE III/ISS. (NOTE: While OMPS currently flies on the NASA–NOAA Suomi National Polar-orbiting Partnership (Suomi NPP), NOAA-20, and NOAA-21 platforms; LP is only part of OMPS on NOAA–21.) The evaluation aims to identify discrepancies and assess the suitability of OMPS-LP data for integration into the GloSSAC framework.

Jianglong Zhang [University of North Dakota] discussed the research plans of a newly funded SAGE project to investigate effective methods for improving stratospheric aerosol analyses and forecasts from aerosol models that can be used for future air quality and visibility forecasts and climate applications. Zhang also presented preliminary comparisons of collocated SAGE aerosol extinction and Cloud Aerosol Transport System (CATS) lidar aerosol extinction values in the stratosphere. [NOTE: CATS operated on ISS from 2015–2017.]

Sara Lu [The State University of New York, Albany] discussed efforts to examine smoke aerosol radiative effects in the upper troposphere and lower stratosphere using SAGE III/ISS observations. Lu explained that this project aims to produce multiyear analysis of aerosol radiative effects from all known pyrocumulonimbus cloud (pyroCb) events worldwide over a range of pyroCb intensities and various injection altitudes, geographic locations, and backgrounds. He presented findings from a pyroCb inventory compiled by the Naval Research Lab (NRL).

Xi Chen and Jun Wang [both University of Iowa] presented their new project on retrieving aerosol properties using SAGE III/ISS lunar measurements. They noted the challenges in normalizing lunar measurements caused by the Moon’s non-uniform surface. To address this, the team is developing a local normalization method to derive atmospheric transmissions from signals detected within each lunar event, enabling accurate aerosol retrieval. They reported that preliminary results are promising as evidenced by comparison with transmission product from collocated solar events – see Figure 2. This new processing will enrich the spatial and temporal coverage of SAGE III/ISS aerosol product by involving lunar events.

SAGE 3 figure 2
Figure 2. Preliminary results of the transmission derived from SAGE III/ISS lunar measurements (y-axis) and its comparison with collocated SAGE III/ISS solar measurements (x-axis). The comparisons are presented in two ways, one for the same wavelength color-coded by altitude [left] and another at the same altitude color-coded for the different wavelengths [right]. The results are for June 2017 through Novembe 2022, and the collocation criteria requires latitude separation smaller than 1˚ and observation times within 10 days. Note that if the transmission at any wavelength or altitude is smaller than 0.005, it is removed from the comparison for quality assurance purpose.
Figure Credit: Xi Chen, University of Iowa

Adam Pastorek and Peter Bernath [both Old Dominion University] discussed the properties of stratospheric SO42- aerosols from the infrared transmission spectra of Atmospheric Chemistry Experiment (ACE) – flying on the Canadian SCISAT satellite since 2003 – and optical extinction from SAGE III/ISS. Based on ACE infrared measurements, the researchers derived an empirical formula to determine the composition (weight % H2SO4) of volcanic plumes. They combined coincident ACE and SAGE III/ISS measurements, using bimodal, log-normal size distributions to reproduce the observations – see Figure 3. They used ACE observations of sulfur dioxide (SO2) to study the creation and destruction of stratospheric SO42- aerosols.

SAGE 3 figure 3
Figure 3. Combined transmittance fitting results from Atmospheric Chemistry Experiment– Fourier Transform Spectrometer (ACE-FTS), and SAGE III/ISS measurements demonstrate an improved characterization of sulfate particle size distribution using bi-lognormal (mode) distributions compared to a single lognormal distribution. The panels on the left show the transmittance fitting [top] and residuals [bottom] for the mono-mode distribution model, while the center panels show the transmittance fitting [top] and residuals [bottom] for the bi-mode distribution. The right panel illustrates the contributions of fine and coarse mode components to the total transmittance. The measurements for this figure were taken approximately four months after the January 2022 Hunga Tonga–Hunga Haʻapai eruption at a tangent height of 23.6 km (14.5 mi) in ACE occultation (ss100628), with coincident SAGE measurements from that same period (2022041609).
Figure Credit: Adam Pastorek, adapted from a Figure in a paper published in Journal of Quantitative Spectroscopy and Radiative Transfer in January 2024.

Sean Davis [NOAA, Chemistry Science Lab] presented on his research aimed at constraining decadal variability and assessing trends in stratospheric composition and tropospheric circulation using SAGE III/ISS and complementary satellite data sets. The team continues to include the SAGE water vapor and O3 products in the Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) dataset. Davis also highlighted preliminary work evaluating V6 data in comparison to the former V5.3. He discussed line-of-sight, transmission-based filtering for O3 profiles and O3 diurnal variability corrections.

Lars Kalnaajs [University of Colorado, Boulder] presented results from two studies of particle size distributions from SAGE aerosol extinction data. Kalnaajs summarized results from two papers in review. His team paired the Optical Particle Counter collected from balloon platforms with SAGE II data to derive the parameters for bi-mode aerosol size distribution. They also presented the work of using SAGE III extinction ratios, 448/756 versus 1544/756, to derive monomodal lognormal size distribution, which allows them to compute distribution moments and compare these to in situ measurements taken over Sweden in the winters of 2002 and 2004.

Anne Thompson [GSFC, emeritus] presented on the Southern Hemisphere Additional Ozonesondes (SHADOZ) network and how that SHADOZ data are a satellite validation standard and can also be used to assess ozone trends in the upper troposphere and lower stratosphere. Thompson emphasized that SHADOZ O3 profiles are the only standard process to obtain measurements from surface to mid-stratosphere at 100–150 m (328–492 ft) resolution. Such measurements are essential to validate O3 measurements from SAGE-derived products. She also presented an update on the free tropospheric and lowermost stratospheric (LMS) O3 trends from eight equatorial SHADOZ sites. Newer calculations confirm that an apparent LMS seasonal decline (July–September) is associated with a roughly 100 m (328 ft) upward trend in tropopause height.

DAY TWO

The second day started with Jack Kaye [NASA Earth Science Division—Associate Director for Research for the Earth Science Divisionemeritus as of April 30, 2025] providing a historic perspective on SAGE and comments on its context within NASA’s overall Earth science program. A technical session was held with three invited presentations, followed by three additional sessions where science team members presented their research on trace gas studies, including data product calibration and validation. The meeting concluded with updates from the SAGE project team on the SAGE III/ISS website and ongoing operations aboard the ISS. In his presentation, Kaye shared about his past involvement with the SAGE program and his perspective on its future in the context of flight missions for Earth observations.

Invited Presentations on Advanced Modeling and New Satellite Mission For UTS

Steven Pawson [GSFC] presented on the comprehensive modeling and analysis capabilities of
Upper troposphere and lower stratosphere (UTLS) dynamics and composition in the Goddard Earth Observing System (GEOS) model Pawson discussed the Global Modeling and Assimilation Office’s (GMAO) recent support for the Asian summer monsoon Chemical and CLimate Impact Project (ACCLIP) mission and the trend analysis of stratospheric O3. He also discussed future plans for GMAO, including improving the representation of water vapor in UTS through data assimilation and increasing horizontal and vertical resolution in the GEOS model.

Kostas Tsigaridis [Columbia University] presented recent research on the composition and climate impacts of increasing launches to Low Earth Orbit (LEO). Assuming that there are 10,000 launches per year and all launches use liquefied natural gas (LNG) as a propellant, the team compiled launch-related emission inventories and highlighted key uncertainties that could significantly affect climate predictions – particularly the impact black carbon has on the radiative balance and heterogeneous chemistry of the UTS. In addition, water vapor was found to contribute to the heating of the stratosphere and to a nontrivial amount of O3 depletion – 13 Dobson units (DU) on the global mean.

Adam Bourassa [University of Saskatchewan, Canada] introduced the satellite mission for High-altitude Aerosol, Water vapor, and Clouds (HAWC), planned as the Canadian contribution to the NASA Atmosphere Observing System (AOS) for launch in 2031 – a key component in NASA’s next generation Earth System Observatory. Bourassa highlighted the three Canadian instruments, which include limb profilers for water vapor and aerosol in the UTS and a far infrared imaging radiometer for ice cloud microphysics and radiative budget closure. He discussed instrument requirements and development progress as well as results from recent sub-orbital testing of prototypes on the NASA Earth Resources (ER)-2 and stratospheric balloons.

Trace Gases

Brian Soden [University of Miami] presented a new project that will use SAGE data to constrain climate sensitivity in climate models. Climate models differ substantially in their calculation of the radiative forcing from carbon dioxide (CO2), and these intermodel differences have remained largely unchanged for several decades. Soden highlighted the role of stratospheric temperature in modulating the radiative forcing from CO2. He explained that models that simulate a cooler stratosphere simulate a larger radiative forcing for the same change in CO2 compared to models that posit a warmer stratosphere. He added that determining the cause of the model biases in stratospheric temperature – particularly the role of water vapor in driving this intermodel spread – is an area of active research.

Ray Wang [Georgia Institute of Technology] compared the uncertainty analysis of SAGE III retrieved O3 and water vapor data in V5.3 to the same parameters in V6.0. He then compared the SAGE III data to the correlative measurements from other platforms. For O3, the differences between SAGE and measurements from the Microwave Limb Sounder (MLS) on NASA’s Aura platform are less than 5% in the stratosphere. SAGE V6.0 ozone values are systematically about 1–2% higher than those from V5.3 O3 –  due to changes in how the O3 cross-section is represented in each version. For water vapor, SAGE data agree with MLS and Frost Point Hygrometer (FPH) data within 5%. Wang showed some differences between SAGE water vapor data retrievals using V5.3 and the same data obtained using version 6.0. He also said that a two-dimensional (i.e., spatial and temporal) regression model can be used to minimize sampling bias in climatology derived from non-uniform satellite measurements – ensuring more accurate representation of long-term trends.

Emma Knowland [GSFC/Morgan State University, Goddard Earth Sciences Technology and Research II (GESTAR II), now NASA HQ—SAGE III/ISS Program Scientist] discussed the progress of assimilating SAGE III water vapor data product into NASA’s GEOS re-analysis. Her team’s work demonstrated that while the number of solar occultation observations a day from SAGE III/ISS is about 1% of the total number of profiles observed globally by MLS, the chemical timescales of water vapor in the lower stratosphere are long enough that the SAGE III/ISS data can provide a valuable constraint on GEOS re-analysis, especially in the absence of MLS data – see Figure 4.

SAGE 3 figure 4
Figure 4. Hovmöller diagrams of the vertical distribution of 15°S–15°N average water vapor anomalies in upper troposphere–stratosphere with water vapor relaxed to a climatology [top left] and from data assimilation of SAGE III/ISS water vapor into the Goddard Earth Observing System (GEOS) model [bottom left]. Scatter plots show water vapor mixing ratios (y-axis) with [top right] and without [bottom right] data assimilation compared independent observations from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) data (x-axis). The ACE–FTS data were not used in data assimilation. This shows that data assimilation of SAGE data improves the agreement with ACE-FTS – especially in the lower stratosphere (400 to 500 K).
Figure Credit: Emma Knowland [NASA]

Melody Avery [University of Colorado, Boulder] discussed using SAGE data  and data from the Cloud–Aerosol Lidar with Orthogonal Projection (CALIOP) instrument (on the former Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission) to study thin clouds and aerosol distributions in the tropical tropopause region (TTL). Avery explained that these distributions from V5.3 of SAGE-III/ISS and V5.41 of CALIOP are shown to agree well, and CALIOP observations of cloud frequency are shown to be a sensitive metric for defining the width of the Hadley Cell near the tropical tropopause. Combining SAGE and CALIOP data produced a longer timescale to constrain and evaluate climate models that currently do not agree on how the tropical width at this altitude varies. They found that results derived using SAGE V6.0 versus V5.3 differ on the order of 2% in the TTL region.

Pamela Wales [GESTAR II] introduced a new project that leverages SAGE III/ISS measurements to explore diurnal characteristics of O3 and nitrogen dioxide (NO2) in GEOS model products. Her team is exploring potentially using a GEOS reanalysis of stratospheric trace gases collected by MLS as a transfer standard to evaluate the consistency between the SAGE III/ISS solar and the less frequently measured lunar retrieval. They are also assessing uncertainties in stratospheric NO2 in the GEOS Composition Forecast (GEOS-CF) model using SAGE III/ISS and complementary satellite instruments. This work will inform how effectively GEOS-CF can be used in air quality studies to remove the stratospheric signal from column retrievals of NO2.

Luis Millán [JPL] presented work on the change of stratospheric water vapor mass after the Hunga Tonga–Hunga Haʻapai (Hunga) volcano eruption in 2022. Millán found an increase (~10%) of total stratospheric water vapor – a potent greenhouse gas. Given their advanced age, MLS, ACE-FTS, and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) mission (Heliosphere Division), are nearing the end of their missions, leaving SAGE III/ISS as the primary instrument for monitoring the plume’s evolution. Millán discussed how the SAGE III/ISS measurements might be sufficient to observe the dispersion of the excess Hunga water vapor from stratosphere in coming years. He also discussed a 39-year plus record of stratospheric water vapor mass using the overlapping periods between SAGE II, MLS, and SAGE III/ISS.

Ryan Stauffer [GSFC] presented the operation and outcomes of the Ticosonde balloon-borne O3 and water vapor sonde project in San Jose, Costa Rica. Ongoing since July 2005, Ticosonde has collected over 700 O3 profiles and 270 water vapor profiles for climate and pollution studies and satellite validation. Because Ticosonde is the only long-term water vapor sonde station in the tropics, the stratospheric water vapor data is vital for validation of SAGE-III/ISS and MLS profiles. Ticosonde has been used to verify the success of updated water vapor retrieval algorithms for both instruments – which now agree within a few percent up to 25 km (15 mi) altitude.

Natalya Kramarova [GSFC] showed the comparison of O3 profile retrieved from SAGE III with those derived from the OMPS-LP sensor – which is part of OMPS on NOAA-21 – from February 2023–June 2024. Diurnal corrections using the Goddard Diurnal Ozone Climatology (which is described in a 2020 article in Atmospheric Measurement Techniques) is applied to account for differences in measurement times between SAGE III’s sunrise or sunset observations and NOAA-21 LP’s midday measurements. Once the time correction is made, results show good agreement between the two instruments in depicting vertical ozone distribution across different geographical regions (e.g., tropics and mid-latitudes) and under various conditions (e.g., near the edge of the Antarctic O3 hole in October 2023). The mean biases between NOAA-21 LP and SAGE III are typically within ±5% between ~18–45 km (11–28 mi).

Project Team and Operations Highlights

Michael Heitz [LaRC] showed that V5.3 and previous versions of the SAGE III/ISS data product had a noticeable – and unphysical – dip in the retrieved aerosol extinction between 520–676 nm. This dip has been referred to as the aerosol “seagull.” However, adoption of a new absorption cross-section database into the V6.0 algorithm reduced the aerosol seagull effect significantly. Kevin Leavor [LaRC] presented new developments for the SAGE III/ISS quick look website. Mary Cate McKee [LaRC] introduced a new feature of the quick look website that showcases comparisons of O3 and water vapor sonde data at over 40 stations. Sonde data is sourced from the Network for the Detection of Atmospheric Composition Change (NDACC), GSFC’s SHADOZ, and the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Heitz explained that the comparison plots are updated continuously as new coincidences occur, providing the community with valuable insight to the quality of SAGE III/ISS data relative to this external network of ground stations. Future additions to the website include aerosol and lidar comparisons, additional plot statistics, and comparisons with novel homogenized datasets.

Returning to a topic discussed in Jamie Nehrir’s presentation, Charles Hill [LaRC] showed that the SAGE III Disturbance Monitoring Package (DMP) correction to the data product – which was implemented beginning with V5.3 – has significantly reduced the product uncertainties caused by ISS vibrations. Approximately 7% of SAGE III occultation events are highly disturbed by mechanical vibrations, and the DMP correction has improved pointing registrations in these events significantly. The DMP’s x-axis gyroscope failed on August 8, 2023 – but this loss did not significantly affect the DMP correction to scan plane elevation. Future possible losses of either the y- or z-axes will end active correction of ISS disturbances.

Conclusion

Jun Wang, David Flittner, and Richard Eckman led the closing discussion that highlighted the growing interest in atmospheric composition change –  particularly due to emissions from large wildfires and volcanic eruptions in recent years. This increasing interest contrasts with the declining availability of observational data from the upper troposphere, following the retirement of CALIPSO in late 2023 and the planned decommissioning of Aura’s aging limb instruments in 2026. This gap underscores the critical importance of SAGE III/ISS data – not only for current UTS research but also for the next 5–7 years, during which no new limb measurements are planned.

SAGE III/ISS remains essential for profiling key atmospheric constituents, including water vapor, aerosols, O₃, and NO₂. The long-term, consistent data record provided by the SAGE series of instruments since the late 1970s – including SAGE III/ISS since 2017 – has been invaluable for studying past and future changes in atmospheric composition within the UTS. To further support research and applications of SAGE data products, participants discussed the possibility of proposing a special collection of articles in AGU journals.

Overall, the 2024 SAGE III/ISS meeting was a success. Participants received valuable updates on the status of SAGE III/ISS operations, data product calibration and validation, and new developments. The meeting also showcased the collective expertise and excellence in driving advancements in UTS research, from climate change studies to data assimilation for chemistry transport models and contributions to multi-sensor data fusion.

Jun Wang
University of Iowa
jun-wang-1@uiowa.edu

David Flittner
Langley Research Center
david.e.flittner@nasa.gov

Richard Eckman
NASA Langley Research Center
richard.s.eckman@nasa.gov

Emma Knowland
NASA Headquarters
k.e.knowland@nasa.gov

Share

Details

Last Updated
May 26, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Department of the Air Force Chief of Safety Maj. Gen. Sean Choquette released the recipients for the fiscal year 2024 Secretary of the Air Force and Chief of Staff Safety Awards, as well as the Air and Space Forces Chief of Safety Awards.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
      The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
      “Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
      The two nominations include:
      Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
      In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
      Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.  
      For more information about NASA missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated May 08, 2025 Related Terms
      General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
      NASA Selects Winners of the 2024-2025 Power to Explore Challenge
      Ten-year-old, Terry Xu of Arcadia, California; 14-year-old, Maggie Hou of Snohomish, Washington; and 17-year-old, Kairat Otorov of Trumbull, Connecticut, winners of the 2024-2025 Power to Explore Student Writing Challenge. NASA/David Lam, Binbin Zheng, The Herald/Olivia Vanni, Meerim Otorova NASA has chosen three winners out of nine finalists in the fourth annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the enabling power of radioisotopes for space exploration.
      “Congratulations to the amazing champions and all of the participants!
      Carl Sandifer II
      Program Manager, NASA’s Radioisotope Power Systems Program
      The essay competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to “nuclear batteries,” which the agency has used discover “moonquakes” on Earth’s Moon and study some of the most extreme of the more than 891 moons in the solar system. In 275 words or less, students dreamed up a unique exploration mission of one of these moons and described their own power to achieve their mission goals.
      “I’m so impressed by the creativity and knowledge of our Power to Explore winners,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland.
      Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, each accompanied by a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities this summer.
      The winners are:
      Terry Xu, Arcadia, California, kindergarten through fourth grade Maggie Hou, Snohomish, Washington, fifth through eighth grade Kairat Otorov, Trumbull, Connecticut, ninth through 12th grade “Congratulations to the amazing champions and all of the participants! Your “super powers” inspire me and make me even more optimistic about the future of America’s leadership in space,” Sandifer said.
      The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
      Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21. There, NASA announced the 45 national semifinalists, and students learned about what powers the NASA workforce.
      Additionally, the national semifinalists received a NASA RPS prize pack.
      NASA announced three finalists in each age group (nine total) on April 23. Finalists were invited to discuss their mission concepts with a NASA scientist or engineer during an exclusive virtual event.
      The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      For more information on radioisotope power systems visit: https://nasa.gov/rps
      Karen Fox / Erin Morton
      Headquarters, Washington
      301-286-6284 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 27 min read
      Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
      Introduction
      On October 16, 2024, a special session of the NASA Goddard Engage series took place in the Goett Auditorium (Building 3) at NASA’s Goddard Space Flight Center (GSFC). The Engage series is intended to explain work at GSFC in an immersive and nontechnical setting. GSFC’s Office of Communications, Earth Sciences Division, and Scientific Colloquium organized this special session.
      The featured speaker for this event was The Honorable Al Gore [former Vice President of the U.S.], who has a long history of advocating for the environment and raising public awareness of the worsening “climate crisis” – having received the Nobel Peace Prize for his efforts.
      The event also featured a panel discussion called “Remote Sensing and the Future of Earth Observations.” Three distinguished scientists spoke about what drew their interest in Earth science and responded to questions from the moderator and the in-person and online audience.
      Editor’s Note: This is not intended to be a comprehensive review of all NASA’s future plans regarding Earth Remote Sensing. Rather the panelists focused on some specific activities on which they had expertise that was intended to give a sense of the full suite of activities planned for the coming decade.
      While The Earth Observer typically does not usually report on Center-specific events, the newsletter makes an exception for this event because the former Vice President participated – and because the topic of the panel discussion is directly relevant to this publications’ wider audience. The remainder of this article summarizes the Engage session, including Gore’s remarks, the panel discussion, and the question-and-answer (Q&A) session that followed. A YouTube video of the full event is available for viewing.
      Opening Remarks
      Dalia Kirschbaum [GSFC—Director of Earth Sciences Division] welcomed the participants – both in-person and virtual. Casey Swails [NASA Headquarters—Deputy Associate Administrator] continued by thanking Gore for being one of most influential voices in the U.S. on climate . She said that Gore’s words and actions have inspired much more than just the Deep Space Climate Observatory (DSCOVR) mission. NASA – and GSFC in particular – has been conducting environmental studies since its beginning. She named historical missions, such as Vanguard, the Television Infrared Observation Satellite (TIROS), Landsat (partnership with U.S. Geological Service), and the Earth Observing System (EOS) – including more than 20 years of observations from the three Flagship Missions: Terra, Aqua, and Aura. (The Earth Observer’s Archives Page includes a “Bibliography of Articles with Historical Content” in which links to articles written on most of the missions mentioned in the previous sentence can be found.)
      Swails pointed out that GSFC is home to the largest population of Earth Scientists who produce more than 400 journal articles each year.
      “It will be you and your successors who will also make NASA (GSFC) the future of Earth observations,” said Swails. “You are continuing to accelerate core science research and enable action through the newly established Earth System Observatory project office, the Greenhouse Gas (GHG) project office, and new flagship missions, such as the Atmospheric Observing System (AOS) and Landsat Next.”
      On behalf of – at the time of the meeting – NASA Administrator Bill Nelson, Swails thanked Gore for participating in the Engage event, and she thanked all the scientists and engineers – past and present – that have led the way in making NASA (GSFC) a leader in Earth observations for more than six decades.
      Featured Speaker: The Honorable Al Gore
      Kirschbaum then introduced Al Gore – shown in Photo 1 – whom she described as an environmental advocate and a central figure in advancing public discourse on climate and sustainability. Following Gore’s many years of political service, he confronted the world with “An Inconvenient Truth,” a documentary on climate change that helped raise global awareness of the worsening state of Earth’s climate. For these efforts, Gore received the Nobel Peace Prize on October 12, 2007.
      Photo 1. Former U.S. Vice President Al Gore was the featured speaker at the Engage session on October 16, 2024. In addition to overall discussion of NASA’s Earth observing fleet and how Earth observations are used to investigate Earth’s changing climate, Gore’s remarks included reminiscences about his involvement in the Triana mission, which NASA canceled, then later revived and revised becoming known as DSCOVR – a NASA–NOAA partnership. See related article, “Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting,” to learn more about DSCOVR and its scientific achievements over a decade in space. Photo credit: Travis Wohlrab [NASA’s Goddard Space Flight Center (GSFC)] Kirschbaum continued that Gore played a pivotal role in inspiring Triana , a NASA Earth science mission that would provide a near continuous view of Earth and measure Earth’s complete albedo while orbiting the first Sun–Earth Lagrange Point (hereinafter referred to as “the L1 point”). While Triana was canceled, the concept would live on and ultimately transition into the NASA–NOAA DSCOVR mission, which celebrates the 10th anniversary of its launch in February 2025. Gore made brief remarks at the opening session of the 10th DSCOVR Science Team meeting earlier in the day before coming to this meeting. A full “Summary of the 10th DSCOVR EPIC/ NISTAR Science Team Meeting” is published as a separate article in The Earth Observer.
      Gore began by thanking all who worked on DSCOVR and other missions at NASA and NOAA. He thanked Makenize Lystrup [GSFC—Center Director] and the team for welcoming him. He also acknowledged the DSCOVR project leaders from GSFC: Adam Szabo [DSCOVR Project Scientist (PS)], Alexander Marshak [DSCOVR Deputy PS], Jay Herman [Earth Polychromatic Imaging Camera (EPIC) Instrument Scientist], Richard Eckman [National Institutes of Health’s Advanced Radiometer (NISTAR) Instrument Scientist], and all those who worked on the mission.
      Gore reminisced about when the Triana mission was put into storage in 2001. He remembered his former Senate colleague, Barbara Mikulski [longtime MD Senator] assuring him that they would “feed [the satellite] space snacks” and take care of it until it was ready to use – which ultimately happened in 2008. He also acknowledged those who’ve worked on the DSCOVR mission since launch to extend its capabilities. He also recognized Francisco Valero [former Triana Principal Investigator] who was at University of California, San Diego’s Scripps Institute of Oceanography at the time, and was integral in championing the first iteration of this mission (i.e., Triana), as well as Alan Lazarus [Massachusetts Institute of Technology (MIT)—Research Scientist], who helped design DSCOVR’s solar particle sensor. (Jay Herman was also involved in Triana.) He also mentioned how Bill Nelson chaired the House Space Subcommittee contemporaneously to when Gore chaired the Senate Space Subcommittee.
      Gore acknowledged that DSCOVR is just one member of NASA’s fleet of Earth observing satellites – see Figure 1 er– plus those of domestic and international partners. What’s unique about DSCOVR, however, is its location – orbiting the L1 point, nearly one million miles (1.1 million km) away from Earth.
      Figure 1. [Top] NASA’s Earth Observing Fleet consists of over 20 satellite missions that, with one exception, continuously monitor our home planet from polar or low Earth orbit – including several installed on the International Space Station. The exception is the Deep Space Climate Observatory (DSCOVR) which orbits the first Earth–Sun Lagrange point in the Earth–Sun system [bottom], about 1 million mi (~1.1 million km) from Earth [bottom]. This gives the mission’s two Earth-observing instruments (EPIC and NISTAR) a unique vantage point for observing the full sunlit Earth. [Bottom] Some version of the placeholder diagram above showing DSCOVR orbiting the L1 point between Sun and Earth, 1 million miles from Earth.  Figure credit: TBD It can be argued that the modern environmental movement – which resulted in the development NASA’s Earth Observing System and other Earth observing missions – was inspired by a single image – “Earthrise,” which NASA Astronaut Bill Anders took of Earth on Christmas Eve 1968 during the Apollo 8 mission. The adage that “a picture is worth 1000 words” proved true in this instance as this single image changed how society viewed Earth, opening society’s awareness to the fragility and beauty of our home planet. Four years later, on Christmas Eve 1972, the first “Blue Marble” image was released, having been taken by Apollo-12 astronauts, as the spacecraft approached the Moon. (The image inspired subsequent “Blue Marble” images created using composites of satellite data.)
      Per the Wikipedia page linked above, “The [Blue Marble image] has been identified as one of the most widely publicized and influential images since its release – particularly in the advocacy for environmental protection.”
      Gore mentioned this in his remarks and stressed that this iconic image helped inspire the Triana/DSCOVR concept. This mission has helped scientists develop a more “complete picture” of Earth. He noted that today, DSCOVR/EPIC obtains a new “Blue Marble” (i.e. a full-disc image of Earth) every fifteen minutes – e.g., a set of images of Africa obtained on the 50th anniversary to mimic the original image from Apollo 12. Gore said that we learn so much about Earth from observing it from above (e.g., cloud dynamics, heating, vegetation, and the concentrations of ozone, sulfur dioxide, and particulate matter in the atmosphere). More than 100 peer-reviewed papers have been published on the unique science done at the L1 point by DSCOVR.
      Gore said that DSCOVR – along with the rest of NASA’s Earth observing fleet – has produced a treasure trove of information that makes it possible to make the invisible, visible. What was once a mystery can now be explained with scientific data. When DSCOVR was proposed in 1998, the scientific community was on the verge of a technological explosion via the Internet that would allow the collection, storage, processing, and display of untold mountains of information about Earth. It has now evolved even further with the advent of Artificial Intelligence (AI), leading to another potential information explosion just at the time when having such information is crucial.
      “We are in the midst of a violent collision between our current society’s organization and the surprisingly fragile ecological systems on which human flourishing depends,” said Gore.
      As the participants convened to celebrate the 10th anniversary of DSCOVR, he encouraged those present to think about how this data can be applied to address the incredible challenges of our generation – chief among them the Earth’s rapidly changing climate.
      “It’s hard to grapple with just how serious the [situation] is,” said Gore. However, he noted that, “Mother nature is a persuasive advocate. She has our attention!”
      He cited the two hurricanes – Helene and Milton – that impacted the U.S. in the weeks prior to this event. Despite the ever-present threat, Gore also pointed to the problematic “assault on funding” for science throughout the Federal budget. To address this need, Gore spoke of the growing need for private–public partnerships to address the imposing climate crisis.
      Gore discussed how Climate TRACE, the organization he cofounded, is harnessing NASA data and fusing it with other sources to pinpoint the sources of GHGs. Climate TRACE has determined the 500 million most relevant point sources, along with metadate (data describing the data). In essence, Climate TRACE seeks to reverse-engineer the GHG levels based on other environmental variables. He said that the newest Climate TRACE dataset will be released on November 14, 2024 at COP-29. Gore acknowledged that NASA [Jet Propulsion Laboratory (JPL)] contributes data and conducts analysis of data used in Climate TRACE.
      Quoting Lord Kelvin, Gore said, “you can only manage what you measure,” noting that our society has been having trouble managing global warming to date. However, thanks to organizations like NASA, our society is gaining the ability to measure it accurately.
      Gore then referenced John F. Kennedy’s famous speech at Rice University in 1961 that is most remembered for the line about “going to the Moon in this decade.” But in that speech Kennedy also said, “We set sail on this new sea, because there is new knowledge to be gained and new rights to be won. And they must be won and used for the progress of all people.”
      Gore applied this quote to the ongoing study of Earth’s climate. He said that our society is continuing to “sail on this new sea.” He gave kudos to all the people at NASA who are seizing all the opportunities to gather and reflect on “new knowledge” and apply it to issues directly relevant to societal flourishing.
      Gore concluded by saying that the DSCOVR mission is a great example of combining scientific discovery and public enlightenment. It has been incredibly successful, and he feels it should be extended, counting on scientists to expand our access to the knowledge we need to ensure the survival of human civilization.
      “If you ever doubt we have the political will to make changes,” said Gore, “just remember that political will is itself a renewable resource.”
      After a standing ovation from the audience, Kirschbaum thanked Gore for his remarks and his continued support of the Earth science community.
      Panel Discussion on the Future of Earth Science Remote Sensing
      Kirschbaum then transitioned to the panel discussion. She reflected on how we live with the impacts of climate every day – e.g., air quality impacting students, hurricanes impacting coastlines and coastal communities, shifting storm patterns impacting farmers.
      Since its inception in 1958, NASA has been a leader in studying Earth. The agency makes critical observations from space, aircraft, and the ground to understand climate change. NASA researchers integrate this information into climate models to understand the past, represent the present, and project the future state of our home planet.
      Kirschbaum said that today’s panel discussion focuses on the future. While questions remain, she emphasized that the agency works with partners on opportunities to do things differently and open new possibilities. She then introduced three NASA scientists, who also provide leadership beyond the walls of NASA.
      Miguel Román[GSFC Earth Sciences Division—Deputy Director for Atmospheres]; Lesley Ott [GSFC—Project Scientist for the U.S. Greenhouse Gas Center]; and John Bolten [GSFC—Chief of Hydrological Sciences Branch]. She asked each panelist – shown in Photo 2 – to start with by sharing a bit of their story with the audience to give some initial insights into their work and background on how they themselves became interested in studying climate.
      Photo 2. Following Gore’s remarks, there was a panel discussion entitled “Remote Sensing and the Future of Earth Observations.” Dalia Kirschbaum [GSFC—Director of Earth Sciences Division – left] moderated the discussion, directing questions to the three panelists seated to her right [left to right]: Miguel Román [GSFC Earth Sciences Division—Deputy Director for Atmospheres]; Lesley Ott [GSFC—Project Scientist for the U.S. Greenhouse Gas Center]; and John Bolten [GSFC—Chief of Hydrological Sciences Branch]. Photo credit: Travis Wohlrab Román began his career as an intern at NASA. After rising through the ranks, he left NASA to work in private industry before recently returning to GSFC. Originally from Puerto Rico, Román has been “inside the walls of a hurricane six times in his life.” He said that American citizens are increasingly experiencing what he experienced as a youth. He noted that two things happen when one in the middle of a hurricane – barometric pressure drops (ears pop) and there is a distinctive hissing sound.
      Román said the term hurricane is derived from a Taino word. He explained that in Puerto Rican folklore, Juracán (i.e., the “evil” Goddess of wind – especially hurricanes) was in opposition to Yucahu (i.e., the “good” God of creation, agriculture, peace, and tranquility).
      “The hissing winds of Juracán now reverberate across Florida, “ said Román—see Figure 2.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 2.  Animation of brightness temperature data obtained by the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua mission, showing Hurricane Milton as it approached and impacted Florida in October 2024. Colder temperatures (blues) are associated with the tops of high clouds, so the storm track stands out from the warmer temperature over the waters of the Gulf of Mexico.
      Figure credit: TBD
      He stressed that these winds are “different” – more intense – than the ones dealt with in the past. He added that we now have “land hurricanes” – called derechos, which are intense, widespread, and fast-moving lines of storms.
      Ott said that, in a sense, “science chose her.” She was raised by two scientists who met while studying physics. But she chose to study meteorology because it seemed to her to be the most ‘personal’ of the sciences. As Kirschbaum alluded to in her remarks earlier, weather impacts us all – physically and even emotionally. She loved this aspect of weather and wanted to understand the science behind the “air that we all swim in.”
      “Weather seems to be less in background and more on the ‘front page’ these days,” said Ott. “We regularly hear news stories about superstorms and devastating fires. We’re all increasingly impacted by extreme weather.”
      She also spoke about the ‘untold’ costs of climate change (e.g., lost school days, lost wages, not knowing if your home will survive a natural disaster), which has impacted how Ott practices meteorology. While she is a meteorologist, Ott doesn’t work on weather prediction. Instead, she uses the same kind of predictive models that are used for weather forecasting to focus on GHGs, which could help society navigate the realities of a changing planet.
      In her work, Ott tracks how climate changes – for better or worse. While the trend toward a warming world (climate) fuels more frequent and powerful extreme events (weather), e.g., heat waves, droughts, and storms, there are exceptions achieved through intentional human intervention – e.g., the recovery of the ozone hole (bought about through enforcement of the Montreal Protocol and its Amendments) and improvements of air quality. Both of these examples of positive change illustrate the value of international collaboration to address environmental issues. Ott said that research efforts can help to “track the future of the planet,” leading to more positive changes. Extending these positive changes to GHGs will help communities more effectively plan for and respond to a rapidly changing world.
      Bolten began by saying that he comes from Wood County WV and is the youngest of five boys. He could see the Ohio River from his kitchen window where he swam and canoed. Bolten explained that Wood County is in an area known as chemical valley, because a large number of chemical plants in the region provide important products for the world. These plants employ many of the people living in the region.
      Bolten’s father designed wastewater treatment systems for these chemical plants and passed along a deep appreciation of the impact humans can have on the environment. Similarly, Bolten spent many years enjoying the Ohio River and West Virginia wilderness, which instilled in him the value of protecting our freshwater resources. He grew up immersed in the environment and wanted to contribute to the greater good of society and make a positive difference in the world. He said that NASA is championing these same core values as an innovator and leader in Earth System Science. Bolten thanked Gore for spurring public discourse around climate.
      Question and Answer Session
      Kirschbaum began the Q&A session with several prepared questions followed by questions from both in-person and virtual participants – along with some more interspersed comments from the guest of honor.
      Kirschbaum posed the first question to Román: How do you see GSFC (NASA) advancements in tech and science helping us to predict extreme weather (e.g., heatwaves and hurricanes)?
      Román began his answer by stating that NASA’s EOS era is coming to an end – after more than two decades of observations. NASA’s EOS flagship missions – Terra, Aqua, and Aura – have each far exceeded their scheduled mission life. While scientists and engineers work together to extend the function as long as possible, practical realities (e.g., fuel supply, orbit decay) dictate that all the satellites must be decommissioned in the next few years. The EOS era has taught NASA and its partners many lessons about how to operate under what he described as “an accelerated set of extreme climate events.”
      “We simply could not have anticipated some of things we’re facing now when the EOS missions were designed,” said Ramon, citing the development of derechos and the rapid intensification of tropical cyclones.
      The EOS mission instrument teams developed a whole Earth observing technology toolbox on the fly. For example, scientists learned that while microwave sounders work well over water, these instruments face challenges over land due to surface emissivity variations. Infrared (IR) sounders, on the other hand, provide valuable data over all surfaces during clear conditions, but they can’t penetrate thick clouds. Investigators combined both measurements, producing a powerful tool for observing the changing Earth system and beginning to quantify the impact of those changes.
      While it is sad to see the EOS era end, Román said that NASA is entering an exciting new era where new technologies will allow for miniaturization of sounders. He also mentioned new observing technologies, such as the Hyperspectral Microwave Photonic Instrument (HyMPI) . The microwave sounders currently flying – which are part of NASA’s current Program of Record – retrieve atmospheric profiles with approximately 20 vertical layers. By contrast, HyMPI can produce as many as 1000 layers, offering enhanced thermodynamic sounding skill in the Earth’s planetary boundary layer (PBL) – the first 2 km (~1 mi) of the atmosphere – over conventional microwave sounders from the current Program of Record.
      Román emphasized that the PBL is an area that is still poorly observed and understood. This lowest level of the atmosphere is where humans and other plants and animals live – and where most climate impacts occur. It is thus vitally important to improve our understanding of the PBL. To emphasize this point, Román cited that one million stillbirths can be linked to tropospheric ozone pollution every year. The encouraging news is that NASA’s data can inform public health policy to help mitigate these harmful impacts.
      “The problem is an integrated one,” said Román, “and the Earth System Observatory (ESO) is designed for all of its missions to be integrated.”
      Román stressed that the climate challenges are complex, and ESO provides a model for all future campaigns to integrate many approaches to solve big problems.
      Kirschbaum directed the next question to Ott: As the NASA leader of the U.S. Greenhouse Gas Center, where do you see NASA making contributions?
      Ott responded that there has been tremendous innovation and advancement in the field of Earth observations over the past several decades – i.e., during the EOS era. As Al Gore alluded to in his earlier remarks, increasingly, this innovation comes from the pairing of private sector with the public data from satellites, aircraft campaigns, and ground networks that provide the infrastructure that companies need to test and improve new approaches.
      NASA has also played a foundational role in developing the systems approach to studying Earth. For example, half of human-produced emissions (sources) of carbon dioxide (CO2) are absorbed by vegetation and the ocean (sinks). It remains unclear how long this balance will continue, however. NASA aims to bring together different measurements of vegetation, ocean productivity, and gases in the atmosphere and make them readily available to the public. A wholistic approach to climate requires input from multiple satellites to successfully model changes in the concentration GHGs throughout the Earth system. To achieve this goal, the best from the government (e.g., NASA data) needs to merge with private industry to produce consistent long term data records that people can trust.
      Kirschbaum agreed that delivering trusted information and providing foundational datasets are core activities for NASA, and used that to segue to the next question, which she addressed to Bolten: NASA (GSFC) sits at the nexus of satellite observations and modeling. Where do you see progress of Earth Science to Action particularly in area of water quality?
      Bolten said that the first image of Earth was obtained 78 years ago in 1946. It happened somewhat by chance. Soldiers and scientists at White Sands Missile Range strapped a camera to a captured German V2 rocket, and they were fortunate to get a clear image of Earth. Fast forward to today, NASA has a fleet of more than 20 Earth-observing satellites – see Figure 1 [top] – that provide routine Earth observations. These data are vital for understanding our home planet, and for decision making. The observations from these satellites can be analyzed and used to inform decisions about Earth.
      The Electronic Numerical Integrator and Computer (ENIAC) was created the same year as the first Earth image. He noted that ENIAC took up an entire room. Today, his smart phone, which fits in his pocket, is more than 230 million times faster than ENIAC – driving home the point that technology has advanced beyond what most could imagine. Bolten also noted that 2024 is NASA’s Year of Open Science.
      Bolten said that his job focuses on food and water insecure areas, which often correlates with areas that lack data infrastructure. There is a vital need to strategically integrate open science and cloud-based services.
      “We can’t do this [work] in a bubble,” said Bolten. “We must work together.”
      Kirschbaum elevated a question from an attendee: There have been various climate change scenarios that have been offered as possibilities. Which one seems most likely to you to be correct?
      Ott explained that the worst- or best-case scenarios are usually outliers (i.e., the conditions in the “real world” typically lie somewhere in between the extremes). She commented that we’ve seen a large climate change investment from the Biden Administration. Those kinds of investments will have impact and have the power to change the trajectory for the future. Part of what NASA does is to show the world that the data we collect does make a tangible difference. That gives society reason for hope. The point of U.S. Greenhouse Gas Center is to bring together all these GHG observations in one place to analyze them and study them to show that we’re making progress on confronting this challenging issue. The objective is to create tangible evidence that, “when we take action, we can change things.”
      As if to underscore Ott’s point, Gore responded during her presentation that he believes that public choice does significantly impact how the future unfolds.
      “What we decide has consequences,” he said. 
      Gore is convinced the issue of our changing climate could be addressed if our society made up our collective mind to do it and then committed ourselves to take the decisive action needed to make that decision a reality in the near future.
       “The future is really up to us,” said Gore.
      The final three questions came from online participants.
      How can NASA improve its messaging?
      Bolten replied that this is a question that comes up repeatedly in the context of NASA outreach and communications. In the context of today’s discussion, he suggested the need to produce information that is not just useful but also usable (i.e., it can be applied in ways that directly benefit society). As an example, he pointed to the use of machine learning to model a flash flooding event in Ellicott City, MD (described in a 2020 article in Journal of Hydrometeorology) where waters rose from a normal levels to a devastating flash flood in about seven minutes – see Photo 3. Bolten continued that transparency, as well as connecting to people’s motivations, are keys to being more successful with NASA’s messaging.
      Photo 3. In May 2018 devastating floodwaters impacted the town of Ellicott City, MD. Water levels in the small basin above the down rose from normal levels to flash flooding in seven minutes.  Figure credit: NOAA’s Physical Science Laboratory What big challenges could NASA turn to an opportunity to address climate change?
      Román said that advances in forecasting on seasonal to sub-seasonal scales are key areas of focus for studies of Earth’s atmosphere. He noted that it is important to have observations and understand these observations to model events. For sub-seasonal prediction, we need to understand stratospheric dynamics and the chemistry going on in the upper troposphere and lower stratosphere.
      “Major fires and volcanic eruptions create massive changes in the atmosphere,” said Román. “We can’t see them like we can when we view a Landsat image.”
      One tool that could help us with sub-seasonal forecasting is the Stratosphere Troposphere Response using Infrared Vertically-resolved light Explorer (STRIVE) mission, which is one of four mission proposals for the first Earth System Explorer missions chosen for initial Phase A study. This mission aims to examine the interaction between the upper troposphere and the lower stratosphere. In particular, STRIVE will make observations of Earth’s limb (i.e., a narrow slice of atmosphere), which can help scientists gain insight into aerosol loading. According to Román, this data will be key to getting an accurate 30-day forecast. He referred to this information as the “holy grail” in terms of preparedness and resilience by improving early warnings for extreme weather. Some nations are limited to only using Doppler radar and if it fails, they are essentially blind to what is coming.
      Kirschbaum cited NASA’s AOS mission, which will be part of ESO, as another example of an important new measuring capability. This mission will represent the “next generation” for precipitations and aerosol observations. Scientists can use the data collected to understand how these phenomena interact with each other and with other atmospheric constituents to form storms.
      “AOS will be the baseline while STRIVE would be the bottom line,” concluded Román.
      What is the path forward to develop capacity for new observations while still maintaining high-quality, long-term time series and making the data accessible to the public?
      Ott cited the Carbon Mapper coalition as a current example where such a balance is being achieved/. Carbon Mapper made its first light images available to the public last week. This mission brings together a unique coalition of partners (including NASA/JPL and Planet, a private company) to develop and deploy two satellites with capabilities to detect and quantify methane (CH4) – e.g., see Figure 3 – and CO2 super-emitters at a level of granularity needed to support direct mitigation action.
      Figure 3. On December 4, 2024, the Tanager–1 satellite detected methane (CH4) plumes streaming downwind from oil and gas facilities in the Permian Basin (in west Texas and southeast New Mexico). This is one of more than 300 images of CH4 super-emitters from the oil and gas, coal, waste, and agriculture sectors across 25 countries that were released in February 2025. Tanager–1 launched in August 2024 and is the first satellite developed by the Carbon Mapper coalition between Planet (a private company) and NASA/Jet Propulsion Laboratory (JPL) and other partners. Planet owns, launched, and operates the satellite, which is equipped with technology from JPL. Figure credit: Carbon Mapper NASA’s investments in technology via its Earth Science Technology Office (ESTO) have enabled new airborne instruments that can be deployed in partnership with industry to demonstrate the quality of present-day satellite technologies and to provide a pathway toward next generation technologies. She stressed that the Federal government continues to play a crucial role in establishing standards and ensuring data integrity and continuity. NASA, for example, invests in ground-based systems and data services that help enable the commercial satellite industry. Long-term continuity of measurements is essential to connect new observations to existing ones. In this way, we can enable the continuing rise of NewSpace, while still providing foundational integrity and stability of the long-term climate data records that NASA and other Federal agencies maintain. This framework helps tie all the NewSpace endeavors together.
      Gore cited an example of a public–private partnership that happened in the past. He commented that in 1998 (the same year that Triana was proposed) he was also involved in proposal for Digital Earth. The guiding vision behind Digital Earth was to be able to hover over any point and drop down through successively more detailed layers. NASA contracted with a company called Keyhole, which Google acquired in the early 2000s. Gore raised this example to point out that Google Earth is the result of those initial efforts.
      Gore also connected this discussion to his work on Climate TRACE, which he had mentioned in his remarks earlier as a current example of public–private partnership. He stated that while we can see CH4 from space, the resolution is relatively low, i.e., a wide area must be scanned to get a CH4 measurement) and higher resolution is required to identify specific (or point) sources of CH4. Climate TRACE offers such higher resolution CH4 measurements, allowing researchers to focus more on identifying specific sources of pollution. By contrast the atmosphere is so enriched with CO2 that the signal-to-noise ratio is too high to measure the gas from space. For CO2 analysis, Climate TRACE uses AI to fuse together various images to allow CO2 to be detectable. The resulting measurements are precise enough to detect ripple ponds created by rotating fan blades.
      Closing Remarks
      Dalia Kirschbaum closed the meeting by thanking the guest of honor, Al Gore, once again for coming to the GSFC event. Gore not only spoke but was an active participant who demonstrated his knowledge of this subject area gained from years of experience working on climate issues. She quipped that “he’s the only former Vice President ever to use the Term signal-to-noise ratio correctly when talking to scientists.”.
      Kirschbaum also thanked everyone who participated in this event – including the over 800 online participants. While the discussions today offered numerous glimpses into the future of Earth remote-sensing observations, this information barely scratches the surface of all the work being carried out by scientists and engineers at NASA to make these plans a reality. She thanked all of those who work at NASA – who often put in long hours, quietly, behind the scenes without much recognition – for the work they do daily to enable NASA’s mission.
      Alan B. Ward
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      alan.b.ward@nasa.gov
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 8 min read
      AGU 2024: NASA Science on Display in the Nation’s Capital
      Introduction
      The American Geophysical Union (AGU) returned to the nation’s capital in 2024, hosting its annual meeting at the Walter E. Washington Convention Center in Washington, DC from December 9–14, 2024. NASA Science upheld its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share NASA’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts as detailed in the essay that follows – see Photo 1. Visitors also watched live Hyperwall presentations and collected NASA Science outreach materials, such as the 2025 NASA Science Planning Guide.
      Photo 1. Paulo Younse [NASA/Jet Propulsion Laboratory (JPL), Robotics Systems Group—Engineer,] poses with a model of the sample tube he designed for the caching architecture that was used on NASA’s Mars Sample Return mission. Photo credit: NASA Highlights from the NASA Science Exhibit
      NASA Hyperwall Stories
      The NASA Hyperwall has been a focal point of the agency’s outreach efforts for over two decades, serving as both a powerful storytelling platform and the primary vehicle through which the public engages with the award-winning visualizations published by NASA’s Scientific Visualization Studio (SVS) – see Photo 2. Forty-nine NASA mission scientists and program representatives shared NASA science with the public from the Hyperwall stage during AGU24. NASA leadership shared mission news and outlined upcoming research across all five of the NASA Science divisions: Earth science, planetary science, heliophysics, astrophysics, and biological and physical sciences – see Photos 3–8. A catalog of NASA project scientists and mission representatives, who provided colorful overviews of everything from NASA’s Mars Sample Return to the Parker Solar Probe’s historic flyby of the Sun, delivered additional presentations. 
      Photo 2. Mark Subbarao [NASA GSFC—Director of NASA’s Scientific Visualization Studio] highlighted key visualizations produced by NASA’s Scientific Visualization Studio during 2024 and presented them as a countdown of the top 10 visualizations of the year. Photo credit: NASA The complete AGU24 Hyperwall schedule is available at this link. Readers can view YouTube videos of the presentations via links over the individual names in the photo captions below.
      Photo 3. Nicola Fox [NASA HQ—Associate Administrator of Science Mission Directorate] kicked off the week’s Hyperwall storytelling series by sharing 12 images selected for the 2025 NASA Science Planning Guide. Each image underscores the beauty of the natural world and the inherent value of scientific endeavors undertaken not only at NASA but by citizens around the globe. Photo credit: NASA Photo 4. Karen St. Germain [NASA HQ—Director of the Earth Science Division] provided audience members with an overview of NASA’s Earth Science Division – including the latest science from the Plankton, Aerosol, Cloud, and Ecosystems (PACE) mission. Photo credit: NASA Photo 5. Jack Kaye [NASA HQ—Director of the Airborne Science Program] highlighted key airborne science missions that flew in 2024 and demonstrated the broad list of airborne satellites and instruments and how their applications enable the advancement of Earth science research around the globe. Photo credit: NASA Photo 6. Joseph Westlake [NASA HQ—Director of the Heliophysics Division] delivered a talk in front of the NASA Hyperwall that captured the groundbreaking research that NASA has planned for the culmination of the Heliophysics Big Year, including mission news related to the Parker Solar Probe, Interstellar Mapping and Acceleration Probe (IMAP), and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS). Photo credit: NASA Photo 7. Mark Clampin [NASA HQ—Director of the Astrophysics Division] gave AGU attendees a glimpse of NASA missions that will help researchers around the globe observe distant worlds and answer profound questions about the physics of the universe beyond our solar system. His presentation centered around the impact of the upcoming Nancy Grace Roman Telescope and Habitable Worlds Observatory (HWO). Photo credit: NASA Photo 8. Lisa Carnell [NASA HQ—Director of the Biological Sciences Division], who sits at the helm of NASA’s newest scientific division, gave an overview of the current and future NASA research that is enhancing our understanding of how humans can live and work in space. Photo credit: NASA During AGU, NASA also celebrated the winners of the 2024 AGU Michael Freilich Student Visualization Competition, an annual competition honoring former NASA Earth Science Division director Michael Freilich that inspires students to develop creative strategies for effectively communicating complex scientific problems – see Photo 9. See the summary of “Symposium on Earth Science and Applications from Space…” [The Earth Observer, Mar–Apr 2020, Volume 32 Issue 3, 4–18] to learn more about Freilich’s career at NASA and impact on Earth science.  A list of the award’s past recipients, dating back to the 2016, is published on AGU’s website.
      Photo 9a. In partnership with AGU, student winners of the 2024 AGU Michael Freilich Student Visualization Competition received prizes and presented their work at the NASA hyperwall stage. Steve Platnick [NASA GSFC—Research Scientist for Earth Science Division ] [left with back to camera] congratulates Caitlin Haedrich [NC State University—Ph.D. candidate, contest winner (CW)]. Photo credit: NASA Photo 9b. Standing on the NASA Hyperwall stage [left to right] are Erik Hankin [AGU—Assistant Director of Career and Student Programs], Barry Lefer [NASA HQ—Program Manager for the Tropospheric Composition Program (TCP)], Mya Thomas [University of Missouri-Kansas City—Undergraduate Student.  CW], Mariliee Karinshak [Washington University in St. Louis—Undergraduate Student, CW], Swati Singh [Auburn University—PhD Candidate, CW], Crisel Suarez [Vanderbilt University—PhD Candidate, CW], and Steve Graham [GSFC/Global Science & Technology Inc.—NASA Science Support Office Task Leader]. Photo credit: NASA Photo 9c. Patrick Kerwin [University of Arizona—Graduate Student, CW] delivers his award-winning talk titled Earth Observation for Disaster Response: Highlighting Applied Products. Photo credit: NASA




      Face-to-face With NASA Experts
      AGU opened its exhibit hall to the public at 10:00 AM on December 9. Thousands of eager attendees poured into the space to engage with exhibit staff, representing a variety of universities, research institutions, and private organizations from around the world.
      Photo 10. AGU attendees explore the NASA Science exhibit space shortly after the exhibit hall opened on December 9. Photo credit: NASA Photo 11a. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA Photo 11b. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA




      NASA Science welcomed AGU attendees, who gathered within the perimeter of the exhibit shortly after opening – see Photo 10 – where NASA staff distributed the 2025 NASA Science Planning Guide – see Photo 11.
      Attendees filtered through the NASA Science booth by the thousands, where more than 130 outreach specialists and subject matter experts from across the agency were available to share mission-specific science and interface directly with members of the public – see Photos 12–15.
      Photo 12. The NASA Science booth included a collection of exhibit tables, where mission scientists and outreach specialists shared information and materials specific to various NASA missions and programs. Photo credit: NASA Photo 13. Outreach specialists from NASA’s Dragonfly mission, which plans to send a robotic aircraft to the surface of Saturn’s moon Titan, speak with attendees in front of a to-scale model of the aircraft. Photo credit: NASA Photo 14. Staff from NASA’s astrobiology program share a collection of graphic novels produced by graphic artist Aaron Gronstal, highlighting the research that the program conducts to answer important questions about the origin, evolution, and distribution of life in the universe. Photo credit: NASA Photo 15. Exhibit staff and AGU attendees interact with three-dimensional (3D) models of NASA spacecraft and technology in augmented reality. Photo credit: NASA AGU attendees met with project scientists and experts at a new exhibit, called “Ask Me Anything.” The discussions spanned a variety of NASA missions, including Mars Sample Return, James Webb Space Telescope, and Parker Solar Probe, with specialists from these and other missions who spoke during the sessions – see Photo 16. An installation of NASA’s Earth Information Center also made an appearance at AGU24, providing attendees with additional opportunities to speak with Earth scientists and learn more about NASA research – see Photo 17.
      Photo 16. NASA Heliophysicists discuss solar science with AGU attendees at the “Ask Me About Heliophysics” table. Photo credit: NASA Photo 17. At the Earth Information Center, attendees spoke with NASA staff about the various ways that NASA keeps tabs on the health of Earth’s atmosphere, oceans, and landmasses from space. Photo credit: NASA 2024 SMD Strategic Content and Integration Meeting
      As they have done for many years now, staff and leadership from NASA’s Science Mission Directorate (SMD) Engagement Branch convened in Washington, DC on December 8 (the day before the Fall AGU meeting began) to discuss agency communications and outreach priorities. This annual meeting provided personnel from each of SMD’s scientific divisions a valuable opportunity to highlight productive strategies and initiatives from the previous calendar year and chart a path for the year ahead. During the single-day event, team leaders shared information related to NASA’s web-modernization efforts, digital outreach strategies, and exhibit presence. Approximately 150 in-person and 50 online NASA staff joined the hybrid meeting.
      After a welcome from Steve Graham [GSFC/GST—NASA Science Support Office Task Leader], who covered meeting logistics, the participants heard from NASA Headquarters’ SMD Engagement and Communication representatives throughout the day. 
      Amy Kaminski [Engagement Branch Chief], who recently replaced Kristen Erickson in this role, used this opportunity to more formally introduce herself to those who might not know her and share her visions for engagement. Karen Fox [Senior Science Communications Official] discussed the evolution of communication for SMD missions over the past decade – moving from siloed communications a decade ago that very much focused on “my mission,” to a much more cooperation between missions and focus on thematic communications. Following up on Kaminski’s remarks that gave an overall vision for engagement, and Fox’s remarks about how having a vision will help streamline our messaging, Alex Lockwood [Strategic Messaging and Engagement Lead] delved into the nuts and bolts of strategic planning, with focus on the use of work packages and memorandums of understanding for promoting upcoming missions.
      After the leadership set the tone for the meeting, Emily Furfaro [NASA Science Digital Manager] gave a rapid tour of many of NASA’s digital assets intended to give participants an idea of the vast resources available for use. Diana Logreira [NASA Science Public Web Manager] then laid out some principles to be followed in developing unified vision for the NASA Science public web experience.
      In the afternoon, there were individual breakout sessions for the Earth Science, Planetary Science, and Heliophysics divisions. These sub-meetings were led by Ellen Gray, Erin Mahoney, and Deb Hernandez, Engagement Leads for Earth Science, Heliophysics, and Planetary Sciences respectively.  These breakout sessions afforded participants with an opportunity to focus on ideas and goals specific to their own divisions for 2025. In the Earth Science breakout session, participants heard from other several other speakers who discussed the beats, or content focus areas, that had been chosen for Earth Science Communications in 2024 – including oceans and Earth Action (formerly known as Applied Sciences) – and those that have been identified for 2025: technology, land science, and continued focus on Earth Action.
      Photo 18a. NASA Science Mission Directorate staff gathers in Washington, DC ahead of AGU for the annual meeting, where in-person attendees hear from leadership and work collaboratively to refine communications strategies for 2025.  Photo credit: NASA Photo 18b. Joseph Westlake [NASA HQ—Heliophysics Division Director] discusses division-specific goals with Heliophysics communication leads during the division’s “breakout session.” Photo credit: NASA Photo 18c. Science Mission Directorate leadership fields questions from SMD staff during the end-of-meeting panel discussion. Photo credit: NASA




      After participants reconvened from the breakouts, Nicola Fox [Associate Administrator, Science Mission Directorate] gave a mid-afternoon presentation in which she presented her perspective on integrated NASA science, which led into a one-hour “Ask Us” panel with Division Directors to conclude the meeting. Participants included: Mark Clampin [Astrophysics], Lisa Carnell [Biological], Julie Robinson [Earth Science, Deputy], Joe Westlake [Heliophysics], John Gagosian [Joint Agency Satellite], Charles Webb [Planetary Science, Acting].
      Based on this meeting, and other communications guidance from NASA HQ, a few general SMD/Earth Science content and engagement priorities for 2025 have emerged. They include:
      continuing to develop stories and products related to the three primary beats for 2025: technology, land, and Earth action; emphasizing the value of SMD science as a whole or system of connected divisions, promoting cross-divisional science; increasing the use of social media as a vehicle to share NASA missions and programs with diverse audiences; focusing on critical – and high-profile – ongoing missions [e.g., Parker Solar Probe, Europa Clipper, Plankton Aerosols, Cloud and ocean Ecosystem (PACE)] and upcoming launches [ARTEMIS and NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR)]; fostering collaborations and partnerships with agencies and institutions, e.g. instillation of the Earth Information Center at the Smithsonian Museum of Natural History; and improving the visitor and guest experience at NASA centers, including Kennedy Space Center launches. Conclusion
      The NASA exhibit is an important component of the agency’s presence at AGU, and NASA leverages its large cohort of scientists who participate in the exchange of information and ideas outside of the exhibit hall – in plenary meetings, workshops, poster sessions, panels, and informal discussions. AGU sessions and events that featured NASA resources, scientists, and program directors included the Living with a Star Town Hall, NASA’s Early Career Research Program, NASA’s Sea Level Change Team: Turning Research into Action, and many more. Click here for the complete list of NASA-related events at AGU24.
      As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. Just as they did in 2024, the agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in the fields of Earth and space science.
      The 2025 AGU annual meeting will be held at the New Orleans Ernest N. Morial Convention Center, in New Orleans, LA, from December 15–19, 2025. See you there.
      Nathan Marder
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      nathan.marder@nasa.gov
      Share








      Details
      Last Updated Feb 25, 2025 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...