Jump to content

Recommended Posts

  • Publishers
Posted

This article is for students grades 5-8.

The International Space Station is a large spacecraft in orbit around Earth. It serves as a home where crews of astronauts and cosmonauts live. The space station is also a unique science laboratory. Several nations worked together to build and use the space station. The space station is made of parts that were assembled in space by astronauts. It orbits Earth at an average altitude of approximately 250 miles. It travels at 17,500 mph. This means it orbits Earth every 90 minutes. NASA is using the space station to learn more about living and working in space. These lessons will make it possible to send humans farther into space than ever before.

Backdropped by the blackness of space and Earth's horizon, the International Space Station is seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. Earlier the STS-119 and Expedition 18 crews concluded 9 days, 20 hours and 10 minutes of cooperative work onboard the shuttle and station. Undocking of the two spacecraft occurred at 2:53 p.m. (CDT) on March 25, 2009.

How Old Is the Space Station?

The first piece of the International Space Station was launched in November 1998. A Russian rocket launched the Russian Zarya (zar EE uh) control module. About two weeks later, the space shuttle Endeavour met Zarya in orbit. The space shuttle was carrying the U.S. Unity node. The crew attached the Unity node to Zarya.

More pieces were added over the next two years before the station was ready for people to live there. The first crew arrived on Nov. 2, 2000. People have lived on the space station ever since. More pieces have been added over time. NASA and its partners from around the world completed construction of the space station in 2011.

International Space Station

______________________________________________________________________

Words to Know

Airlock: an air-tight chamber that can be pressurized and depressurized to allow access between spaces with different air pressure.

Microgravity: a condition, especially in space orbit, where the force of gravity is so weak that weightlessness occurs.

Module: an individual, self-contained segment of a spacecraft that is designed to perform a particular task.

Truss: a structural frame based on the strong structural shape of the triangle; functions as a beam to support and connect various components.

______________________________________________________________________

iss068e036094 (Jan. 2, 2023) --- NASA astronaut and Expedition 68 Flight Engineer Josh Cassada peers through one of the seven windows in the cupola, the International Space Station's "window to the world."

How Big Is the Space Station?

The space station has the volume of a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. It is able to support a crew of seven people, plus visitors. On Earth, the space station would weigh almost one million pounds. Measured from the edges of its solar arrays, the station covers the area of a football field including the end zones. It includes laboratory modules from the United States, Russia, Japan, and Europe.

Dangerous Maneuvers

What Are the Parts of the Space Station?

In addition to the laboratories where astronauts conduct science research, the space station has many other parts. The first Russian modules included basic systems needed for the space station to function. They also provided living areas for crew members. Modules called “nodes” connect parts of the station to each other.

Stretching out to the sides of the space station are the solar arrays. These arrays collect energy from the sun to provide electrical power. The arrays are connected to the station with a long truss. On the truss are radiators that control the space station’s temperature.

Robotic arms are mounted outside the space station. The robot arms were used to help build the space station. Those arms also can move astronauts around when they go on spacewalks outside. Other arms operate science experiments.

Astronauts can go on spacewalks through airlocks that open to the outside. Docking ports allow other spacecraft to connect to the space station. New crews and visitors arrive through the ports. Astronauts fly to the space station on SpaceX Dragon and Russian Soyuz spacecraft. Robotic spacecraft use the docking ports to deliver supplies

NASA astronauts Christina Koch and Andrew Morgan

Why Is the Space Station Important?

The space station has made it possible for people to have an ongoing presence in space. Human beings have been living in space every day since the first crew arrived. The space station’s laboratories allow crew members to do research that could not be done anywhere else. This scientific research benefits people on Earth. Space research is even used in everyday life. The results are products called “spinoffs.” Scientists also study what happens to the body when people live in microgravity for a long time. NASA and its partners have learned how to keep a spacecraft working well. All of these lessons will be important for future space exploration.

NASA currently is working on a plan to explore other worlds. The space station is one of the first steps. NASA will use lessons learned on the space station to prepare for human missions that reach farther into space than ever before.

s79e5277~large.jpg?w=1920&h=1280&fit=cli

Career Corner

Are you interested in a career that is related to living and working in space? Many different types of jobs make the space station a success. Here are a few examples:

Astronaut: These explorers come from a wide variety of backgrounds including military service, the medical field, science research, and engineering design. Astronauts must have skills in leadership, teamwork, and communications. They spend two years training before they are eligible to be assigned to spaceflight missions.

Microgravity Plant Scientist: These scientists study ways to grow plants in the microgravity environment of space. Growing plants on future space missions could provide food and oxygen. Plant scientists design experiments to be conducted by astronauts on the space station. These test new techniques for maximizing plant growth.

Fitness Trainer: Spending months on the space station takes a toll on astronauts’ bodies. Fitness trainers work with astronauts before, during, and after their space station missions to help keep them strong and healthy. This includes creating workout plans for while they’re living and working in space.

More About the International Space Station

International Space Station Home Page

Spot the Station

Video: #AskNASA What Is the International Space Station?

Read What Is the International Space Station? (Grades K-4)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA has released a new proposal opportunity for industry to tap into agency know-how, resources, and expertise. The Announcement of Collaboration Opportunity (ACO), managed by the Space Technology Mission Directorate, enables valuable collaboration without financial exchanges between NASA and industry partners. Instead, companies leverage NASA subject matter experts, facilities, software, and hardware to accelerate their technologies and prepare them for future commercial and government use. 
      On Wednesday, NASA issued a standing ACO announcement for partnership proposals which will be available for five years and will serve as the umbrella opportunity for topic-specific appendix releases. NASA intends to issue appendices every six to 12 months to address evolving space technology needs. The 2025 ACO appendix is open for proposals until Sept. 24.  
      NASA will host an informational webinar about the opportunity and appendix at 2 p.m. EDT on Wednesday, Aug. 6. Interested proposers are encouraged to submit questions which will be answered during the webinar and will be available online after the webinar.   
      NASA teaming with industry isn’t new – decades of partnerships have resulted in ambitious missions that benefit all of humanity. But in recent years, NASA has also played a key role as a technology enabler, providing one-of-a-kind tools, resources, and infrastructure to help commercial aerospace companies achieve their goals.  
      Since 2015, NASA has collaborated with industry on approximately 80 ACO projects. Here are some ways the collaborations have advanced space technology: 
      Lunar lander systems 
      Blue Origin and NASA worked together on several ACOs to mature the company’s lunar lander design. NASA provided technical reports and assessments and conducted tests at multiple centers to help Blue Origin advance a stacked fuel cell system for a lander’s primary power source. Other Blue Origin ACO projects evaluated high-temperature engine materials and advanced a landing navigation and guidance system. 
      Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration. 
      Artist concept of Blue Origin’s Blue Moon Mark 1 (MK1) lander.Blue Origin Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration. 
      Cryogenic fluid transfer 
      Throughout a year-long ACO, NASA and SpaceX engineers worked together to perform in-depth computational fluid analysis of proposed propellant transfer methods between two SpaceX Starship spacecraft in low-Earth orbit. The SpaceX-specific analysis utilized Starship flight data and data from previous NASA research and development to identify potential risks and help mitigate them during the early stages of commercial development. NASA also provided inputs as SpaceX developed an initial concept of operations for its orbital propellant transfer missions. 
      Artist’s concept of Starship propellant transfer in space.SpaceX SpaceX used the ACO analyses to inform the design of its Starship Human Landing System, which NASA selected in 2021 to put the first Artemis astronauts on the Moon. 
      Autonomous spacecraft navigation solution 
      Advanced Space and NASA partnered to advance the company’s Cislunar Autonomous Positioning System – software that allows lunar spacecraft to determine their location without relying exclusively on tracking from Earth.  
      Dylan Schmidt, CAPSTONE assembly integration and test lead, installs solar panels onto the CAPSTONE spacecraft at Tyvak Nano-Satellite Systems, Inc., in Irvine, California.NASA/Dominic Hart The CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) spacecraft launched to the Moon in 2022 and continues to operate and collect critical data to refine the software. Under the ACO, Advanced Space was able to use NASA’s Lunar Reconnaissance Orbiter to conduct crosslink experiments with CAPSTONE, helping mature the navigation solution for future missions. The mission’s Cislunar Autonomous Positioning System technology was initially supported through the NASA Small Business Innovation Research program. 
      Multi-purpose laser sensing system 
      Sensuron and NASA matured a miniature, rugged fiber optic sensing system capable of taking thermal and shape measurements for multiple applications. Throughout the ACO, Sensuron benefitted from NASA’s expertise in fiber optics and electrical, mechanical, and system testing engineering to design, fabricate, and “shake and bake” its prototype laser. 
      NASA’s Armstrong Flight Research Center’s FOSS, Fiber Optic Sensing System, recently supported tests of a system designed to turn oxygen into liquid oxygen, a component of rocket fuel. Patrick Chan, electronics engineer, and NASA Armstrong’s FOSS portfolio project manager, shows fiber like that used in the testing.NASA/Genaro Vavuris Space missions could use the technology to monitor cryogenic propellant levels and determine a fuel tank’s structural integrity throughout an extended mission. The laser technology also has medical applications on Earth, which ultimately resulted in the Sensuron spinoff company, The Shape Sensing Company. 
      Flexible lunar tires 
      In 2023, Venturi Astrolab began work with NASA under an ACO to test its flexible lunar tire design. The company tapped into testing capabilities unique to NASA, including heat transfer to cold lunar soil, traction, and life testing. The data validated the performance of tire prototypes, helping ready the design to support future NASA missions. 
      In 2024, NASA selected three companies, including Venturi Astrolab, to advance capabilities for a lunar terrain vehicle that astronauts could use to travel around the lunar surface, conducting scientific research on the Moon and preparing for human missions to Mars. 
      Venturi Lab designed and developed a durable, robust, and hyper-deformable lunar wheel.Venturi Lab The Announcement of Collaboration Opportunity (ACO) is one of many ways NASA enables commercial industry to develop, build, own, and eventually operate space systems. To learn more about these technology projects and more, visit: https://techport.nasa.gov/.
      Facebook logo @NASATechnology @NASA_Technology Explore More
      2 min read NASA Seeks Industry Concepts on Moon, Mars Communications
      Article 1 week ago 1 min read USBR Seal Team Fix Challenge
      Article 1 week ago 4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
      Article 1 week ago Share
      Details
      Last Updated Jul 30, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Communicating and Navigating with Missions Small Spacecraft Technology Program Space Communications Technology Technology Technology Transfer & Spinoffs View the full article
    • By NASA
      NASA Astronaut Kate RubinsNASA NASA astronaut and microbiologist Kate Rubins retired Monday after 16 years with the agency. During her time with NASA, Rubins completed two long-duration missions aboard the International Space Station, logging 300 days in space and conducting four spacewalks.
       
      “I want to extend my sincere gratitude to Kate for her dedication to the advancement of human spaceflight,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “She is leaving behind a legacy of excellence and inspiration, not only to our agency, but to the research and medical communities as well. Congratulations, Kate, on an extraordinary career.”
       
      Rubins’ first mission to the orbiting laboratory began in July 2016, aboard the first test flight of the new Soyuz MS spacecraft. As part of Expedition 48/49, she contributed to more than 275 scientific experiments, including molecular and cellular biology research, and she was the first person to sequence DNA in space. Her work enabled significant advances with in-flight molecular diagnostics, long-duration cell culture, and the development of molecular biology tools and processes, such as handling and transferring small amounts of liquids in microgravity. Rubins also led the integration and deployment of biomedical hardware aboard the space station, supporting crew health and scientific research in space and on Earth.
       
      She again launched in October 2020, aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, taking part in Expedition 63/64. Alongside her crewmates, Rubins spent hundreds of hours working on new experiments and furthering research investigations conducted during her mission, including heart research and multiple microbiology studies. She also advanced her work on DNA sequencing in space, which could allow future astronauts to diagnose illness or identify microbes growing aboard the station or during future exploration missions.
       
      “From her groundbreaking work in space to her leadership on the ground, Kate has brought passion and excellence to everything she’s done,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She’s been an incredible teammate and role model. We will miss her deeply, but her impact will continue to inspire.”
       
      In addition to her flight assignments, Rubins served as acting deputy director of NASA’s Human Health and Performance Directorate, where she helped guide strategy for crew health and biomedical research. More recently, she contributed to developing next-generation lunar spacesuits, helping prepare for future Artemis missions to the Moon.
       
       
      Before her selection as an astronaut in 2009, Rubins received a bachelor’s degree in molecular biology from the University of California, San Diego, and a doctorate in cancer biology from Stanford University Medical School’s Biochemistry Department and Microbiology and Immunology Department. After returning from her second space mission, Rubins commissioned as a major in the U.S. Army Reserve, serving as a microbiologist in the Medical Service Corps. She currently holds the role of innovation officer with the 75th U.S. Army Reserve Innovation Command’s MedBio Detachment, headquartered in Boston. 


      A frequent keynote speaker at scientific, educational, and industry events on space biology, biomedical engineering, and human exploration, Rubins has advocated for NASA’s scientific and exploration missions. As she transitions from government service, she remains committed to advancing innovation at the intersection of biology, technology, and space.
       
      “It has been the honor of a lifetime to live and work in space,” said Rubins. “I am grateful for the extraordinary advances at NASA, and it was a privilege to serve and contribute to something so meaningful. The mission of exploration continues, and I can’t wait to watch this nation do what once seemed impossible.”
       

      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      -end-
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov

      View the full article
    • By NASA
      Credit: NASA NASA has selected Barrios Technology, LLC, in Houston to provide technical integration services for the agency’s human space flight programs.
      The Mission Technical Integration Contract is a cost-plus-award-fee and cost-plus-incentive fee contract with core and indefinite-delivery/indefinite-quantity requirements. It has a total estimated value of approximately $450 million, and a period of performance beginning Oct. 1, and ending on Sept. 30, 2027, along with four one-year option periods through 2031.
      Under the contract, the contractor will provide technical integration and related services for multiple human space flight programs. These services include program, business, configuration and data management, information technology, systems engineering and integration, mission integration, safety and mission assurance, and operations.
      For information about the agency and its programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Jul 28, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Johnson Space Center View the full article
    • By NASA
      Join the 2025 NASA International Space Apps Challenge: Learn, Launch, Lead
      On October 4–5, 2025, NASA—along with 14 international space agency partners—invites scientists, engineers, coders, designers, storytellers, and space enthusiasts of all kinds to take part in the 2025 NASA International Space Apps Challenge. This two-day global hackathon brings together diverse teams to tackle real-world problems using NASA’s open data, alongside space-based data from agencies around the world.
      This year’s theme, Learn, Launch, Lead, encourages participants to:
      Learn new skills and deepen their understanding of STEM, Launch bold ideas by transforming open data into actionable solutions, and Lead communities in pioneering innovation and discovery. Participants will collaborate to develop creative, open-source projects that address Earth and space-related challenges. Whether you’re a seasoned developer, an aspiring student, or a creative thinker, there’s a place for you in this global movement.
      Together, we’ll use the power of open data and global collaboration to solve some of the world’s toughest challenges—on Earth and beyond.
      Learn more and register now!
      View the full article
    • By NASA
      NASA's SpaceX Crew-11 Mission to the International Space Station (Official NASA Trailer)
  • Check out these Videos

×
×
  • Create New...