Members Can Post Anonymously On This Site
Andrea Harrington’s Vision Paves the Way for Lunar Missions
-
Similar Topics
-
By NASA
5 min read
Percolating Clues: NASA Models New Way to Build Planetary Cores
NASA’s Perseverance rover was traveling in the channel of an ancient river, Neretva Vallis, when it captured this view of an area of scientific interest nicknamed “Bright Angel” – the light-toned area in the distance at right. The area features light-toned rocky outcrops that may represent either ancient sediment that later filled the channel or possibly much older rock that was subsequently exposed by river erosion. NASA/JPL-Caltech A new NASA study reveals a surprising way planetary cores may have formed—one that could reshape how scientists understand the early evolution of rocky planets like Mars.
Conducted by a team of early-career scientists and long-time researchers across the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston, the study offers the first direct experimental and geochemical evidence that molten sulfide, rather than metal, could percolate through solid rock and form a core—even before a planet’s silicate mantle begins to melt.
For decades, scientists believed that forming a core required large-scale melting of a planetary body, followed by heavy metallic elements sinking to the center. This study introduces a new scenario—especially relevant for planets forming farther from the Sun, where sulfur and oxygen are more abundant than iron. In these volatile-rich environments, sulfur behaves like road salt on an icy street—it lowers the melting point by reacting with metallic iron to form iron-sulfide so that it may migrate and combine into a core. Until now, scientists didn’t know if sulfide could travel through solid rock under realistic planet formation conditions.
Working on this project pushed us to be creative. It was exciting to see both data streams converge on the same story.
Dr. Jake Setera
ARES Scientist with Amentum
The study results gave researchers a way to directly observe this process using high-resolution 3D imagery—confirming long-standing models about how core formation can occur through percolation, in which dense liquid sulfide travels through microscopic cracks in solid rock.
“We could actually see in full 3D renderings how the sulfide melts were moving through the experimental sample, percolating in cracks between other minerals,” said Dr. Sam Crossley of the University of Arizona in Tucson, who led the project while a postdoctoral fellow with NASA Johnson’s ARES Division. “It confirmed our hypothesis—that in a planetary setting, these dense melts would migrate to the center of a body and form a core, even before the surrounding rock began to melt.”
Recreating planetary formation conditions in the lab required not only experimental precision but also close collaboration among early-career scientists across ARES to develop new ways of observing and analyzing the results. The high-temperature experiments were first conducted in the experimental petrology lab, after which the resulting samples—or “run products”—were brought to NASA Johnson’s X-ray computed tomography (XCT) lab for imaging.
A molten sulfide network (colored gold) percolates between silicate mineral grains in this cut-out of an XCT rendering—rendered are unmelted silicates in gray and sulfides in white. Credit: Crossley et al. 2025, Nature Communications X-ray scientist and study co-author Dr. Scott Eckley of Amentum at NASA Johnson used XCT to produce high-resolution 3D renderings—revealing melt pockets and flow pathways within the samples in microscopic detail. These visualizations offered insight into the physical behavior of materials during early core formation without destroying the sample.
The 3D XCT visualizations initially confirmed that sulfide melts could percolate through solid rock under experimental conditions, but that alone could not confirm whether percolative core formation occurred over 4.5 billion years ago. For that, researchers turned to meteorites.
“We took the next step and searched for forensic chemical evidence of sulfide percolation in meteorites,” Crossley said. “By partially melting synthetic sulfides infused with trace platinum-group metals, we were able to reproduce the same unusual chemical patterns found in oxygen-rich meteorites—providing strong evidence that sulfide percolation occurred under those conditions in the early solar system.”
To understand the distribution of trace elements, study co-author Dr. Jake Setera, also of Amentum, developed a novel laser ablation technique to accurately measure platinum-group metals, which concentrate in sulfides and metals.
“Working on this project pushed us to be creative,” Setera said. “To confirm what the 3D visualizations were showing us, we needed to develop an appropriate laser ablation method that could trace the platinum group-elements in these complex experimental samples. It was exciting to see both data streams converge on the same story.”
When paired with Setera’s geochemical analysis, the data provided powerful, independent lines of evidence that molten sulfide had migrated and coalesced within a solid planetary interior. This dual confirmation marked the first direct demonstration of the process in a laboratory setting.
Dr. Sam Crossley welds shut the glass tube of the experimental assembly. To prevent reaction with the atmosphere and precisely control oxygen and sulfur content, experiments needed to be sealed in a closed system under vacuum. Credit: Amentum/Dr. Brendan Anzures The study offers a new lens through which to interpret planetary geochemistry. Mars in particular shows signs of early core formation—but the timeline has puzzled scientists for years. The new results suggest that Mars’ core may have formed at an earlier stage, thanks to its sulfur-rich composition—potentially without requiring the full-scale melting that Earth experienced. This could help explain longstanding puzzles in Mars’ geochemical timeline and early differentiation.
The results also raise new questions about how scientists date core formation events using radiogenic isotopes, such as hafnium and tungsten. If sulfur and oxygen are more abundant during a planet’s formation, certain elements may behave differently than expected—remaining in the mantle instead of the core and affecting the geochemical “clocks” used to estimate planetary timelines.
This research advances our understanding of how planetary interiors can form under different chemical conditions—offering new possibilities for interpreting the evolution of rocky bodies like Mars. By combining experimental petrology, geochemical analysis, and 3D imaging, the team demonstrated how collaborative, multi-method approaches can uncover processes that were once only theoretical.
Crossley led the research during his time as a McKay Postdoctoral Fellow—a program that recognizes outstanding early-career scientists within five years of earning their doctorate. Jointly offered by NASA’s ARES Division and the Lunar and Planetary Institute in Houston, the fellowship supports innovative research in astromaterials science, including the origin and evolution of planetary bodies across the solar system.
As NASA prepares for future missions to the Moon, Mars, and beyond, understanding how planetary interiors form is more important than ever. Studies like this one help scientists interpret remote data from spacecraft, analyze returned samples, and build better models of how our solar system came to be.
For more information on NASA’s ARES division, visit: https://ares.jsc.nasa.gov/
Victoria Segovia
NASA’s Johnson Space Center
281-483-5111
victoria.segovia@nasa.gov
Share
Details
Last Updated May 22, 2025 Related Terms
Astromaterials Planetary Science Planetary Science Division The Solar System Explore More
6 min read NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
Article
2 hours ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
1 week ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Planetary Science Stories
Astromaterials
Latest NASA Science News
Solar System
View the full article
-
By NASA
5 Min Read NASA Knows: What is Lunar Regolith? (Grades 5-8)
This article is for students grades 5-8.
The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith. It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
What is lunar regolith like?
Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft! In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
Is regolith harmful to astronauts?
The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
Can regolith damage NASA equipment?
Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
All of this can make exploring the Moon much more difficult and even dangerous!
What is NASA doing to understand lunar regolith?
NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
The more NASA knows about how regolith behaves, the better they can plan for safe missions!
Career Corner
Many types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
Explore More
Making Regolith Activity
Watch: Mitigating Lunar Dust
Watch: NASA SCALPSS
Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
Explore More For Students Grades 5-8
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Lunar Reconnaissance Orbiter Camera (LROC) imaged the landing area of the ispace SMBC x HAKUTO-R Venture Moon Mission 2 RESILIENCE lunar lander which is slated to land on the surface of the Moon no earlier than June 5, 2025 (UTC). This view of the primary landing area is 3.13 miles (5,040 meters) wide and north is up. The site is in Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges. Mare Frigoris formed over 3.5 billion years ago as massive basalt eruptions flooded low-lying terrain.
Share
Details
Last Updated May 16, 2025 Related Terms
Earth's Moon Goddard Space Flight Center Lunar Reconnaissance Orbiter (LRO) View the full article
-
By NASA
NASA named Stanford University of California winner of the Lunar Autonomy Challenge, a six-month competition for U.S. college and university student teams to virtually map and explore using a digital twin of NASA’s In-Situ Resource Utilization Pilot Excavator (IPEx).
The winning team successfully demonstrated the design and functionality of their autonomous agent, or software that performs specified actions without human intervention. Their agent autonomously navigated the IPEx digital twin in the virtual lunar environment, while accurately mapping the surface, correctly identifying obstacles, and effectively managing available power.
Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Team photo of NAV Lab Lunar Autonomy Challenge from Stanford UniversityCredit: Stanford University’s NAV Lab team The Lunar Autonomy Challenge has been a truly unique experience. The challenge provided the opportunity to develop and test methods in a highly realistic simulation environment."
Adam dai
Lunar Autonomy Challenge team lead, Stanford University
Dai added, “It pushed us to find solutions robust to the harsh conditions of the lunar surface. I learned so much through the challenge, both about new ideas and methods, as well as through deepening my understanding of core methods across the autonomy stack (perception, localization, mapping, planning). I also very much enjoyed working together with my team to brainstorm different approaches and strategies and solve tangible problems observed in the simulation.”
The challenge offered 31 teams a valuable opportunity to gain experience in software development, autonomy, and machine learning using cutting-edge NASA lunar technology. Participants also applied essential skills common to nearly every engineering discipline, including technical writing, collaborative teamwork, and project management.
The Lunar Autonomy Challenge supports NASA’s Lunar Surface Innovation Initiative (LSII), which is part of the Space Technology Mission Directorate. The LSII aims to accelerate technology development and pursue results that will provide essential infrastructure for lunar exploration by collaborating with industry, academia, and other government agencies.
The work displayed by all of these teams has been impressive, and the solutions they have developed are beneficial to advancing lunar and Mars surface technologies as we prepare for increasingly complex missions farther from home.”
Niki Werkheiser
Director of Technology Maturation and LSII lead, NASA Headquarters
“To succeed, we need input from everyone — every idea counts to propel our goals forward. It is very rewarding to see these students and software developers contributing their skills to future lunar and Mars missions,” Werkheiser added.
Through the Lunar Autonomy Challenge, NASA collaborated with the Johns Hopkins Applied Physics Laboratory, Caterpillar Inc., and Embodied AI. Each team contributed unique expertise and tools necessary to make the challenge a success.
The Applied Physics Laboratory managed the challenge for NASA. As a systems integrator for LSII, they provided expertise to streamline rigor and engineering discipline across efforts, ensuring the development of successful, efficient, and cost-effective missions — backed by the world’s largest cohort of lunar scientists.
Caterpillar Inc. is known for its construction and excavation equipment and operates a large fleet of autonomous haul trucks. They also have worked with NASA for more than 20 years on a variety of technologies, including autonomy, 3D printing, robotics, and simulators as they continue to collaborate with NASA on technologies that support NASA’s mission objectives and provide value to the mining and construction industries.
Embodied AI collaborated with Caterpillar to integrate the simulation into the open-source driving environment used for the challenge. For the Lunar Autonomy Challenge, the normally available digital assets of the CARLA simulation platform, such as urban layouts, buildings, and vehicles, were replaced by an IPEx “Digital Twin” and lunar environmental models.
“This collaboration is a great example of how the government, large companies, small businesses, and research institutions can thoughtfully leverage each other’s different, but complementary, strengths,” Werkheiser added. “By substantially modernizing existing tools, we can turn today’s novel technologies into tomorrow’s institutional capabilities for more efficient and effective space exploration, while also stimulating innovation and economic growth on Earth.”
FINALIST TEAMS
First Place
NAV Lab team
Stanford University, Stanford, California
Second Place
MAPLE (MIT Autonomous Pathfinding for Lunar Exploration) team
Massachusetts Institute of Technology, Cambridge, MA
Third Place
Moonlight team
Carnegie Mellon University, Pittsburgh, PA
OTHER COMPETING TEAMS
Lunar ExplorersArizona State UniversityTempe, ArizonaAIWVU West Virginia University Morgantown, West VirginiaStellar Sparks California Polytechnic Institute Pomona Pomona, California LunatiX Johns Hopkins University Whiting School of EngineeringBaltimore CARLA CSU California State University, Stanislaus Turlock, CaliforniaRose-Hulman Rose-Hulman Institute of Technology Terre Haute, IndianaLunar PathfindersAmerican Public University SystemCharles Town, West Virginia Lunar Autonomy Challenge digital simulation of lunar surface activity using a digital twin of NASA’s ISRU Pilot ExcavatorJohns Hopkins Applied Physics Laboratory Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
NASA’s Lunar Surface Innovation Initiative
Game Changing Development Projects
Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
ISRU Pilot Excavator
View the full article
-
By NASA
NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.
NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.
One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions.
Return to Newsletter Explore More
1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available
Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
Article 2 mins ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.