Jump to content

Recommended Posts

  • Publishers
Posted

When future astronauts set foot on Mars, they will stand on decades of scientific groundwork laid by people like Andrea Harrington.  

As NASA’s sample return curation integration lead, Harrington is helping shape the future of planetary exploration and paving the way for interplanetary discovery.  

An image of a woman standing in front of a blue background with two flags behind her, a U.S. flag (left) and NASA flag (right). She is wearing a black cardigan and shirt.
Official portrait of Andrea Harrington.
NASA/Josh Valcarcel

Harrington works in NASA’s Astromaterials Research and Exploration Sciences Division, or ARES, at Johnson Space Center in Houston, where she integrates curation, science, engineering, and planetary protection strategies into the design and operation of new laboratory facilities and sample handling systems. She also helps ensure that current and future sample collections—from lunar missions to asteroid returns—are handled with scientific precision and preserved for long-term study.  

“I am charged with protecting the samples from Earth—and protecting Earth from the restricted samples,” Harrington said. This role requires collaboration across NASA centers, senior leadership, engineers, the scientific community, and international space exploration agencies. 

With a multidisciplinary background in biology, planetary science, geochemistry, and toxicology, Harrington has become a key expert in developing the facility and contamination control requirements needed to safely preserve and study sensitive extraterrestrial samples. She works closely with current and future curators to improve operational practices and inform laboratory specifications—efforts that will directly support future lunar missions. 

A woman wearing a black suit stands in front of a brown wall emulating
Andrea Harrington in front of NASA’s Astromaterials Research and Exploration Sciences Division Mars Wall at Johnson Space Center in Houston.

Her work has already made a lasting impact. She helped develop technologies such as a clean closure system to reduce contamination during sample handling and ultraclean, three-chamber inert isolation cabinets. These systems have become standard equipment and are used for preserving samples from missions like OSIRIS-REx and Hayabusa2. They have also supported the successful processing of sensitive Apollo samples through the Apollo Next Generation Sample Analysis Program

In addition to technology development, Harrington co-led the assessment of high-containment and pristine facilities to inform future technology and infrastructural requirements for Restricted Earth Returns, critical for sample returns Mars, Europa, and Enceladus.

Harrington’s leadership, vision, and technical contribution have reached beyond ARES and have earned her two Director’s Commendations.   

“The experiences I have acquired at NASA have rounded out my background even more and have provided me with a greater breadth of knowledge to draw upon and then piece together,” said Harrington. “I have learned to trust my instincts since they have allowed me to quickly assess and effectively troubleshoot problems on numerous occasions.” 

A woman dressed in a white cleanroom suit in a curation laboratory.
Andrea Harrington in Johnson’s newly commissioned Advanced Curation Laboratory.

Harrington also serves as the Advanced Curation Medical Geology lead. She and her team are pioneering new exposure techniques that require significantly less sample material to evaluate potential health risks of astromaterials.  

Her team is studying a range of astromaterial samples and analogues to identify which components may trigger the strongest inflammatory responses, or whether multiple factors are at play. Identifying the sources of inflammation can help scientists assess the potential hazards of handling materials from different planetary bodies, guide decisions about protective equipment for sample processors and curators, and may eventually support astronaut safety on future missions. 

Harrington also spearheaded a Space Act Agreement to build a science platform on the International Space Station that will enable planetary science and human health experiments in microgravity, advancing both human spaceflight and planetary protection goals.

A woman wearing a red blouse stands at a podium in a conference room.
Andrea Harrington at the National Academies Committee on Planetary Protection and Committee on Astrobiology and Planetary Sciences in Irvine, California.

Harrington credits her NASA career for deepening her appreciation of the power of communication. “The ability to truly listen and hear other people’s perspectives is just as important as the ability to deliver a message or convey an idea,” she said.  

Her passion for space science is rooted in purpose. “What drew me to NASA is the premise that what I would be doing was not just for myself, but for the benefit of all,” she said. “Although I am personally passionate about the work I am doing, the fact that the ultimate goal is to enable the fulfillment of those passions for generations of space scientists and explorers to come is quite inspiring.” 

A collage of three images of two sisters posing outside together as kids (top two images) and adults.
Andrea Harrington and her twin sister, Jane Valenti, as children (top two photos) and at Brazos Bend State Park in Needville, Texas, in 2024.

Harrington loves to travel, whether she is mountain biking through Moab, scuba diving in the Galápagos, or immersing herself in the architecture and culture of cities around the world. She shares her passion for discovery with her family—her older sister, Nicole Reandeau; her twin sister, Jane Valenti; and especially her husband, Alexander Smirnov.

A lesson she hopes to pass along to the Artemis Generation is the spirit of adventure along with a reminder that exploration comes in many forms.  

“Artemis missions and the return of pristine samples from another planetary bodies to Earth are steppingstones that will enable us to do even more,” Harrington said. “The experience and lessons learned could help us safely and effectively explore distant worlds, or simply inspire the next generation of explorers to do great things we can’t yet even imagine.” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Science James Webb Space Telescope (JWST) NASA’s Webb Observes Immense… Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning   6 Min Read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Full image shown below. Credits:
      Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured by NASA’s James Webb Space Telescope. Stretching across 8 light-years, the length of the stellar eruption is approximately twice the distance between our Sun and the next nearest stars, the Alpha Centauri system. The size and strength of this particular stellar jet, located in a nebula known as Sharpless 2-284 (Sh2-284 for short), qualifies it as rare, say researchers.
      Streaking across space at hundreds of thousands of miles per hour, the outflow resembles a double-bladed dueling lightsaber from the Star Wars films. The central protostar, weighing as much as ten of our Suns, is located 15,000 light-years away in the outer reaches of our galaxy.
      The Webb discovery was serendipitous. “We didn’t really know there was a massive star with this kind of super-jet out there before the observation. Such a spectacular outflow of molecular hydrogen from a massive star is rare in other regions of our galaxy,” said lead author Yu Cheng of the National Astronomical Observatory of Japan.
      Image A: Stellar Jet in Sh2-284 (NIRCam Image)
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) This unique class of stellar fireworks are highly collimated jets of plasma shooting out from newly forming stars. Such jetted outflows are a star’s spectacular “birth announcement” to the universe. Some of the infalling gas building up around the central star is blasted along the star’s spin axis, likely under the influence of magnetic fields.
      Today, while hundreds of protostellar jets have been observed, these are mainly from low-mass stars. These spindle-like jets offer clues into the nature of newly forming stars. The energetics, narrowness, and evolutionary time scales of protostellar jets all serve to constrain models of the environment and physical properties of the young star powering the outflow.
      “I was really surprised at the order, symmetry, and size of the jet when we first looked at it,” said co-author Jonathan Tan of the University of Virginia in Charlottesville and Chalmers University of Technology in Gothenburg, Sweden.
      Its detection offers evidence that protostellar jets must scale up with the mass of the star powering them. The more massive the stellar engine propelling the plasma, the larger the gusher’s size.
      The jet’s detailed filamentary structure, captured by Webb’s crisp resolution in infrared light, is evidence the jet is plowing into interstellar dust and gas. This creates separate knots, bow shocks, and linear chains.
      The tips of the jet, lying in opposite directions, encapsulate the history of the star’s formation. “Originally the material was close into the star, but over 100,000 years the tips were propagating out, and then the stuff behind is a younger outflow,” said Tan.
      Outlier
      At nearly twice the distance from the galactic center as our Sun, the host proto-cluster that’s home to the voracious jet is on the periphery of our Milky Way galaxy.
      Within the cluster, a few hundred stars are still forming. Being in the galactic hinterlands means the stars are deficient in heavier elements beyond hydrogen and helium. This is measured as metallicity, which gradually increases over cosmic time as each passing stellar generation expels end products of nuclear fusion through winds and supernovae. The low metallicity of Sh2-284 is a reflection of its relatively pristine nature, making it a local analog for the environments in the early universe that were also deficient in heavier elements.
      “Massive stars, like the one found inside this cluster, have very important influences on the evolution of galaxies. Our discovery is shedding light on the formation mechanism of massive stars in low metallicity environments, so we can use this massive star as a laboratory to study what was going on in earlier cosmic history,” said Cheng.
      Unrolling Stellar Tapestry
      Stellar jets, which are powered by the gravitational energy released as a star grows in mass, encode the formation history of the protostar.
      “Webb’s new images are telling us that the formation of massive stars in such environments could proceed via a relatively stable disk around the star that is expected in theoretical models of star formation known as core accretion,” said Tan. “Once we found a massive star launching these jets, we realized we could use the Webb observations to test theories of massive star formation. We developed new theoretical core accretion models that were fit to the data, to basically tell us what kind of star is in the center. These models imply that the star is about 10 times the mass of the Sun and is still growing and has been powering this outflow.”
      For more than 30 years, astronomers have disagreed about how massive stars form. Some think a massive star requires a very chaotic process, called competitive accretion.
      In the competitive accretion model, material falls in from many different directions so that the orientation of the disk changes over time. The outflow is launched perpendicularly, above and below the disk, and so would also appear to twist and turn in different directions.
      “However, what we’ve seen here, because we’ve got the whole history – a tapestry of the story – is that the opposite sides of the jets are nearly 180 degrees apart from each other. That tells us that this central disk is held steady and validates a prediction of the core accretion theory,” said Tan.
      Where there’s one massive star, there could be others in this outer frontier of the Milky Way. Other massive stars may not yet have reached the point of firing off Roman-candle-style outflows. Data from the Atacama Large Millimeter Array in Chile, also presented in this study, has found another dense stellar core that could be in an earlier stage of construction.
      The paper has been accepted for publication in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Related Information
      View more: Webb images of other protostar outflows – HH 49/50, L483, HH 46/47, and HH 211
      View more: Data visualization of protostar outflows – HH 49/50
      Animation Video – “Exploring Star and Planet Formation”
      Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
      Read more about Herbig-Haro objects
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Related Images & Videos
      Stellar Jet in Sh2-284 (NIRCam Image)
      Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars–the more massive the stellar engine driving the plasma, the larger the resulting jet.


      Stellar Jet in Sh2-284 (NIRCam Compass Image)
      This image of the stellar jet in Sh2-284, captured by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera), shows compass arrows, scale bar, and color key for reference.


      Immense Stellar Jet in Sh2-284
      This video shows the relative size of two different protostellar jets imaged by NASA’s James Webb Space Telescope. The first image shown is an extremely large protostellar jet located in Sh2-284, 15,000 light-years away from Earth. The outflows from the massive central prot…




      Share








      Details
      Last Updated Sep 10, 2025 Location NASA Goddard Space Flight Center Contact Media Laura Betz
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      laura.e.betz@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Christine Pulliam
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe
      Related Links and Documents
      The journal paper by Y. Cheng et al.

      Keep Exploring Related Topics
      James Webb Space Telescope


      Space Telescope


      Stars



      Stars Stories



      Universe


      View the full article
    • By European Space Agency
      Image: Immense stellar jet in Milky Way outskirts View the full article
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
    • By NASA
      NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.
      The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.
      NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland David J. McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.
      The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.
      David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.
      The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.
      NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
      To learn more about IMAP, please visit:
      https://www.nasa.gov/imap
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Division Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science Mission Directorate Solar Terrestrial Probes Program View the full article
    • By NASA
      4 Min Read La NASA revela los finalistas del concurso de diseño de la mascota lunar de Artemis II
      Read this story in English here.
      La NASA ya tiene 25 finalistas para el diseño del indicador de gravedad cero de Artemis II que volará con la tripulación de esta misión alrededor de la Luna y de regreso a la Tierra el próximo año.

      Los astronautas Reid Wiseman, Victor Glover y Christina Koch de la NASA, y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen pronto seleccionarán uno de los diseños finalistas para que les acompañe dentro de la nave espacial Orion como su mascota lunar.

      “El indicador de gravedad cero de Artemis II será especial para la tripulación”, dijo Reid Wiseman, comandante de Artemis II. “En una nave espacial llena de equipos y herramientas complejas que mantienen viva a la tripulación en el espacio profundo, el indicador es una forma amigable y útil de resaltar el elemento humano que es tan crítico para nuestra exploración del universo. Nuestra tripulación está entusiasmada con estos diseños provenientes de muchos lugares del mundo y esperamos con interés llevar al ganador con nosotros en este viaje”.

      Un indicador de gravedad cero es un pequeño peluche que típicamente viaja con la tripulación para indicar visualmente el momento en que llegan al espacio. Durante los primeros ocho minutos después del despegue, la tripulación y el indicador, que estará situado cerca de ellos, seguirán siendo presionados contra sus asientos por la gravedad y la fuerza de la subida al espacio. Cuando se apaguen los motores principales de la etapa central del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés), se eliminarán las restricciones de la gravedad, pero la tripulación seguirá atada de manera segura a sus asientos: la capacidad de flotar de su indicador de gravedad cero será la evidencia de que han llegado al espacio.

      Artemis II será la primera misión en la que el público haya participado en la creación de la mascota de la tripulación.

      Estos diseños, con ideas que abarcan desde versiones lunares de criaturas terrestres hasta visiones creativas sobre la exploración y el descubrimiento, fueron seleccionados entre más de 2.600 propuestas procedentes de más de 50 países, e incluyen diseños de estudiantes desde primaria a secundaria. Los finalistas representan a 10 países, entre los que están Estados Unidos, Canadá, Colombia, Finlandia, Francia, Alemania, Japón, Perú, Singapur y Gales.

      Mira aquí los diseños finalistas:

      Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” En marzo, la NASA anunció que buscaba propuestas de creadores de todo el mundo para el diseño de un indicador de gravedad cero que volaría a bordo de Artemis II, la primera misión tripulada de la campaña Artemis de la NASA. Se pidió a los creadores que presentaran ideas que representaran la importancia de Artemis, la misión, o la exploración y el descubrimiento, y que cumplieran con requisitos específicos de tamaño y materiales. La empresa de crowdsourcing (colaboración abierta) Freelancer sirvió como facilitadora del concurso en nombre de la NASA, a través del Laboratorio de Campeonatos de la NASA, el cual es gestionado por la Dirección de Misiones de Tecnología Espacial de la agencia.

      Una vez que la tripulación haya seleccionado un diseño final, el Laboratorio de Mantas Térmicas de la NASA lo fabricará para el vuelo. El indicador estará amarrado dentro de Orion antes del lanzamiento.

      La misión, que tendrá alrededor de 10 días de duración, es otro paso adelante hacia misiones en la superficie lunar y sirve como preparación para futuras misiones tripuladas a Marte de la agencia.

      Mediante Artemis II, la NASA enviará astronautas a explorar la Luna para llevar a cabo descubrimientos científicos, obtener beneficios económicos y sentar las bases para las primeras misiones tripuladas a Marte.
      View the full article
  • Check out these Videos

×
×
  • Create New...