Members Can Post Anonymously On This Site
Spacewalk Research and Technology
-
Similar Topics
-
By NASA
Heading into a recent staff meeting for Johnson Space Center’s Business Development & Technology Integration Office, Jason Foster anticipated a typical agenda of team updates and discussion. He did not expect an announcement that he had been named a 2025 Rookie of the Year – Honorable Mention through the Federal Laboratory Consortium’s annual awards program.
Foster was one of only three technology transfer professionals across the federal government to be recognized in the Rookie of the Year category, which is open to early-career individuals with less than three years of experience. “It was definitely a surprise,” he said. “It was quite an honor, because it’s not only representing Johnson Space Center but also NASA.”
Jason Foster recognized at the Federal Laboratory Consortium Award Ceremony as a Rookie of the Year – Honorable Mention.Image courtesy of Jason Foster Foster is a licensing specialist and New Technology Report (NTR) specialist within Johnson’s Technology Transfer Office in Houston. That team works to ensure that innovations developed for aeronautics and space exploration are made broadly available to the public, maximizing their benefit to the nation. Foster’s role involves both capturing new technologies developed at Johnson and marketing and licensing those technologies to companies that would like to use and further develop them.
He describes much of his work as “technology hunting” – reaching out to branches, offices, and teams across Johnson to teach them about the Technology Transfer Office, NTRs, and the value of technology reporting for NASA and the public. “NTRs are the foundation that allows our office to do our job,” he said. “We need to know about a technology in order to transfer it.”
Jason Foster (left) visited NASA’s White Sands Test Facility in Las Cruces, New Mexico, with his colleague Edgar Castillo as part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster’s efforts to streamline and strengthen the reporting and patenting of Johnson’s innovations led to his recognition by the consortium. His proactive outreach and relationship-building improved customer service and contributed to 158 NTRs in fiscal year 2024 – the highest number of NTRs disclosed by federal employees at any NASA center. Foster also proposed a three-month NTR sprint, during which he led a team of seven in an intensive exercise to identify and report new technologies. This initiative not only cleared a backlog of leads for the office, but also resulted in more than 120 previously undisclosed NTRs. “We are still using that process now as we continue processing NTRs,” Foster said. On top of those achievements, he helped secure the highest recorded number of license agreements with commercial entities in the center’s history, with 41 licenses executed in fiscal year 2024.
“I am very proud of my accomplishments, none of it would be possible without the open-mindedness and continuous support of my incredible team,” Foster said. “They have always provided a space to grow, and actively welcome innovation in our processes and workflows.”
Jason Foster educated Johnson employees about the Technology Transfer Office and the importance of submitting New Technology Reports during the center’s annual Innovation Showcase.Image courtesy of Jason Foster A self-described “space nerd,” Foster said he always envisioned working at NASA, but not until much later in his career – ideally as an astronaut. He initially planned to pursue an astrophysics degree but discovered a passion for engineering and fused that with his love of space by studying aerospace, aeronautical, and astronautical engineering instead. In his last semester of college at California Polytechnic State University of San Luis Obispo, he landed a Universities Space Research Association internship at Johnson, supporting flight software development for crew exercise systems on the International Space Station and future exploration missions. “I got really involved in the Johnson Space Center team and the work, and I thought, what if I joined NASA now?”
He was hired as a licensing specialist on the Technology Transfer team under the JETS II Contract as an Amentum employee shortly after graduating and continually seeks new opportunities to expand his role and skillsets. “The more I can learn about anything NASA’s doing is incredible,” he said. “I found myself in this perfect position where literally my job is to learn everything there is to learn.”
Jason Foster holding up Aerogel during his visit to the Hypervelocity Impact Testing Laboratory at NASA’s White Sands Test Facility in Las Cruces, New Mexico. The visit was part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster celebrates three years with NASA this July. In his time at the agency, he has learned the value of getting to know and understand your colleagues’ needs in order to help them. Before he meets with someone, he takes time to learn about the organization or team they are a part of, the work they are involved in, and what they might discuss. It is also important to determine how each person prefers to communicate and collaborate. “Doing your homework pays dividends,” Foster said. He has found that being as prepared as possible opens doors to more opportunities, and it helps to save valuable time for busy team members.
Jason Foster practices fire spinning on a California beach. Image courtesy of Jason Foster When he is not technology hunting, you might find Foster practicing the art of fire spinning. He picked up the hobby in college, joining a club that met at local beaches to practice spinning and capturing different geometric patterns through long exposure photos. “It was kind of a strange thing to get into, but it was really fun,” he said. His love of learning drives his interest in other activities as well. Gardening is a relatively new hobby inspired by a realization that he had never grown anything before.
“It’s a genuine joy, I think, coming across something with curiosity and wanting to learn from it,” he said. “I think it especially helps in my job, where your curiosity switch has to be on at least 90% of the time.”
Explore More
4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 6 days ago 4 min read Johnson’s Paige Whittington Builds a Symphony of Simulations
Article 3 weeks ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator
Article 4 weeks ago View the full article
-
By USH
The photograph was captured by the Mast Camera (Mastcam) aboard NASA’s Curiosity rover on Sol 3551 (August 2, 2022, at 20:43:28 UTC).
What stands out in the image are two objects, that appear strikingly out of place amid the natural Martian landscape of rocks and boulders. Their sharp edges, right angles, flat surfaces, and geometric symmetry suggest they may have been shaped by advanced cutting tools rather than natural erosion.
Could these ancient remnants be part of a destroyed structure or sculpture? If so, they may serve as yet another piece of evidence pointing to the possibility that Mars was once home to an intelligent civilization, perhaps even the advanced humanoid beings who, according to some theories, fled the catastrophic destruction of planet Maldek and sought refuge on the Red Planet.
Objects discovered by Jean Ward Watch Jean Ward's YouTube video on this topic: HereSee original NASA source: Here
View the full article
-
By Space Force
Vandenberg Space Force Base stands as a vital hub where Guardians and Airmen oversee launches that safeguard U.S. interests and uphold America’s edge in the space domain.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Jet Propulsion Laboratory perfected aerogel for the Stardust mission. Under Stardust, bricks of aerogel covered panels on a spacecraft that flew behind a comet, with the microporous material “soft catching” any particles that might strike it and preserving them for return to Earth.NASA Consisting of 99% air, aerogel is the world’s lightest solid. This unique material has found purpose in several forms — from NASA missions to high fashion.
Driven by the desire to create a 3D cloud, Greek artist, Ioannis Michaloudis, learned to use aerogel as an artistic medium. His journey spanning more than 25 years took him to the Massachusetts Institute of Technology (MIT) in Cambridge; Shivaji University in Maharashtra, India, and NASA’s Jet Propulsion Laboratory in Southern California.
A researcher at MIT introduced Michaloudis to aerogel after hearing of his cloud-making ambition, and he was immediately intrigued. Aerogel is made by combining a polymer with a solvent to create a gel and flash-drying it under pressure, leaving a solid filled with microscopic pores.
Scientists at JPL chose aerogel in the mid-1990s to enable the Stardust mission, with the idea that a porous surface could capture particles while flying on a probe behind a comet. Aerogel worked in lab tests, but it was difficult to manufacture consistently and needed to be made space-worthy. NASA JPL hired materials scientist Steve Jones to develop a flight-ready aerogel, and he eventually got funding for an aerogel lab.
The aerogel AirSwipe bag Michaloudis created for Coperni’s 2024 fall collection debut appears almost luminous in its model’s hand. The bag immediately captured the world’s attention.Coperni
The Stardust mission succeeded, and when Michaloudis heard of it, he reached out to JPL, where Jones invited him to the lab. Now retired, Jones recalled, “I went through the primer on aerogel with him, the different kinds you could make and their different properties.” The size of Jones’ reactor, enabling it to make large objects, impressed Michaloudis. With tips on how to safely operate a large reactor, he outfitted his own lab with one.
In India, Michaloudis learned recipes for aerogels that can be molded into large objects and don’t crack or shrink during drying. His continued work with aerogels has created an extensive art portfolio.
Michaloudis has had more than a dozen solo exhibitions. All his artwork involves aerogel, drawing attention with its unusual qualities. An ethereal, translucent blue, it casts an orange shadow and can withstand molten metals.
In 2020, Michaloudis created a quartz-encapsulated aerogel pendant for the centerpiece of that year’s collection from French jewelry house Boucheron. Michaloudis also captured the fashion and design world’s attention with a handbag made of aerogel, unveiled at Coperni’s 2024 fall collection debut.
NASA was a crucial step along the way. “I am what I am, and we made what we made thanks to the Stardust project,” said Michaloudis.
Read More Share
Details
Last Updated Jun 09, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read NASA Tech Gives Treadmill Users a ‘Boost’
Creators of the original antigravity treadmill continue to advance technology with new company.
Article 2 weeks ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
Article 3 weeks ago 3 min read Meet Four NASA Inventors Improving Life on Earth and Beyond
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Technology Transfer & Spinoffs
Stardust
NASA’s Stardust was the first spacecraft to bring samples from a comet to Earth, and the first NASA mission to…
Solar System
View the full article
-
By NASA
NASA and ISRO (Indian Space Research Organisation) are collaborating to launch scientific investigations aboard Axiom Mission 4, the fourth private astronaut mission to the International Space Station. These studies include examining muscle regeneration, growth of sprouts and edible microalgae, survival of tiny aquatic organisms, and human interaction with electronic displays in microgravity.
The mission is targeted to launch no earlier than Tuesday, June 10, aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from NASA’s Kennedy Space Center in Florida
Regenerating muscle tissue
Immunofluorescent image of human muscle fibers for Myogenesis-ISRO, showing nuclei (blue) and proteins (red).Institute for Stem Cell Science and Regenerative Medicine, India During long-duration spaceflights, astronauts lose muscle mass, and their muscle cells’ regenerative ability declines. Researchers suspect this may happen because microgravity interferes with metabolism in mitochondria, tiny structures within cells that produce energy. The Myogenesis-ISRO investigation uses muscle stem cell cultures to examine the muscle repair process and test chemicals known to support mitochondrial function. Results could lead to interventions that maintain muscle health during long-duration space missions, help people on Earth with age-related muscle loss and muscle-wasting diseases, and assist athletes and people recovering from surgery.
Sprouting seeds
This preflight image shows sprouted fenugreek seeds for the Sprouts-ISRO investigation.Ravikumar Hosamani Lab, University of Agricultural Sciences, India The Sprouts-ISRO investigation looks at the germination and growth in microgravity of seeds from greengram and fenugreek, nutritious plants commonly eaten on the Indian subcontinent. Bioactive compounds in fenugreek seeds also have therapeutic properties, and the leaves contain essential vitamins and minerals. Learning more about how space affects the genetics, nutritional content, and other characteristics over multiple generations of plants could inform the development of ways for future missions to reliably produce plants as a food source.
Microalgae growth
Culture bags for Space Microalgae-ISRO.Redwire Space Microalgae-ISRO studies how microgravity affects microalgae growth and genetics. Highly digestible microalgae species packed with nutrients could be a food source on future space missions. These organisms also grow quickly, produce energy and oxygen, and consume carbon dioxide, traits that could be employed in life support and fuel systems on spacecraft and in certain scenarios on Earth.
Tiny but tough
NASA astronaut Peggy Whitson sets up the BioServe microscope, which will be used by the Voyager Tardigrade-ISRO investigation.NASA Tardigrades are tiny aquatic organisms that can tolerate extreme conditions on Earth. Voyager Tardigrade-ISRO tests the survival of a strain of tardigrades in the harsh conditions of space, including cosmic radiation and ultra-low temperatures, which kill most life forms. Researchers plan to revive dormant tardigrades, count the number of eggs laid and hatched during the mission, and compare the gene expression patterns of populations in space and on the ground. Results could help identify what makes these organisms able to survive extreme conditions and support development of technology to protect astronauts on future missions and those in harsh environments on Earth.
Improving electronic interactions
NASA astronaut Loral O’Hara interacts with a touchscreen. Voyager Displays-ISRO examines how spaceflight affects use of such devices.NASA Research shows that humans interact with touchscreen devices differently in space. Voyager Displays – ISRO examines how spaceflight affects interactions with electronic displays such as pointing tasks, gaze fixation, and rapid eye movements along with how these interactions affect the user’s feelings of stress or wellbeing. Results could support improved design of control devices for spacecraft and habitats on future space missions as well as for aviation and other uses on Earth.
Download high-resolution photos and videos of the research mentioned in this article.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Latest News from Space Station Research
Humans In Space
Space Station Research Results
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.