Members Can Post Anonymously On This Site
Specialty NASA Glenn License Plates Available
-
Similar Topics
-
By NASA
Technicians conduct blanket closeout work on NASA’s IMAP (Interstellar Mapping and Acceleration Probe) observatory at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Friday, Aug. 15, 2025. The IMAP mission will explore and map the boundaries of the heliosphere — a huge bubble created by the Sun’s wind that encapsulates our entire solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond.Credit: NASA/Kim Shiflett Media accreditation is open for the launch of three observatories that will study the Sun and enhance the ability to make accurate space weather forecasts, helping protect technology systems that affect life on Earth.
NASA is targeting no earlier than Tuesday, Sept. 23, for the launch of the agency’s IMAP (Interstellar Mapping and Acceleration Probe), the Carruthers Geocorona Observatory, and National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On–Lagrange 1 (SWFO-L1) observatory. The observatories will launch aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Accredited media will have the opportunity to participate in prelaunch briefings and interviews with key mission personnel prior to launch, as well as cover the launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
Media accreditation deadlines for the launch are as follows:
International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, Aug. 31. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Thursday, Sept. 4. All accreditation requests must be submitted online at:
https://media.ksc.nasa.gov
NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the NASA Kennedy newsroom at 321-867-2468.
Para obtener información en español en sobre el Centro Espacial Kennedy, comuníquese con Antonia Jaramillo: 321-501-8425. Si desea solicitar entrevistas en español sobre IMAP, póngase en contacto con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
NASA’s IMAP will use 10 science instruments to study and map the heliosphere, a vast magnetic bubble surrounding the Sun protecting our solar system from radiation incoming from interstellar space. This mission and its two rideshares will orbit the Sun near Lagrange point 1, about one million miles from Earth, where it will scan the heliosphere, analyze the composition of charged particles, and investigate how those particles move through the solar system. This will provide information on how the Sun accelerates charged particles, filling in essential puzzle pieces to understand the space weather environment across the solar system. The IMAP spacecraft also will continuously monitor solar wind and cosmic radiation. Scientists can use this information to evaluate new and improved capabilities for space weather prediction tools and models, which are vital for the health of human space explorers and the longevity of technological systems, like satellites and power grids, that can affect life on Earth.
The agency’s Carruthers Geocorona Observatory is a small satellite set to study the exosphere, the outermost part of Earth’s atmosphere. Using ultraviolet cameras, it will monitor how space weather from the Sun impacts the exosphere, which plays a crucial role in protecting Earth from space weather events that can affect satellites, communications, and power lines. The exosphere, a cloud of neutral hydrogen extending to the Moon and possibly beyond, is created by the breakdown of water and methane by ultraviolet light from the Sun, and its glow, known as the geocorona, has been observed globally only four times before this mission.
The SWFO-L1 mission, managed by NOAA and developed with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and commercial partners, will use a suite of instruments to provide real-time measurements of solar wind, along with a compact coronagraph to detect coronal mass ejections from the Sun. The observatory, serving as an early warning beacon for potentially destructive space weather events, will enable faster and more accurate forecasts. Its 24/7 data will support NOAA’s Space Weather Prediction Center in protecting vital infrastructure, economic interests, and national security, both on Earth and in space.
David McComas, professor, Princeton University, leads the IMAP mission with an international team of 25 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and operates the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes program portfolio. The Explorers and Heliophysics Project Division at NASA Goddard manages the program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.
NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
For more details about the IMAP mission and updates on launch preparations, visit:
https://science.nasa.gov/mission/imap/
-end-
Abbey Interrante
Headquarters, Washington
301-201-0124
abbey.a.interrante@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Leejay Lockhart
Kennedy Space Center, Fla.
321-747-8310
leejay.lockhart@nasa.gov
John Jones-Bateman
NOAA’s Satellite and Information Service, Silver Spring, Md.
202-242-0929
john.jones-bateman@noaa.gov
Share
Details
Last Updated Aug 21, 2025 LocationNASA Headquarters Related Terms
IMAP (Interstellar Mapping and Acceleration Probe) Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Heliophysics Division Kennedy Space Center Launch Services Program Science & Research Science Mission Directorate Space Weather
View the full article
-
By NASA
From top left to right, NASA astronauts Victor Glover, Artemis II pilot; Reid Wiseman, Artemis II commander; CSA (Canadian Space Agency) astronaut Jeremy Hansen, Artemis II mission specialist, and NASA astronaut Christina Koch, Artemis II mission specialist, suit up and walk out of the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Aug. 11.Credit: NASA/Kim Shiflett Lee esta nota de prensa en español aquí.
NASA is opening media accreditation for multi-day events to introduce America’s newest astronaut class and provide briefings for the Artemis II crewed test flight around the Moon. The activities will take place in September at the agency’s Johnson Space Center in Houston.
After evaluating more than 8,000 applications, NASA will debut its 2025 class of astronaut candidates during a ceremony at 12:30 p.m. EDT on Monday, Sept. 22. Following the ceremony, the candidates will be available for media interviews.
The astronaut selection event will stream live on NASA+, Netflix, Amazon Prime, NASA’s YouTube channel, and the agency’s X account.
The selected candidates will undergo nearly two years of training before they graduate as flight-eligible astronauts for agency missions to low Earth orbit, the Moon, and ultimately, Mars.
Next, NASA will host a series of media briefings on Tuesday, Sept. 23, and Wednesday, Sept. 24, to preview the upcoming Artemis II mission, slated for no later than April 2026. The test flight, a launch of the SLS (Space Launch System) rocket and Orion spacecraft, will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, on an approximately 10-day mission around the Moon.
Artemis II will help confirm the systems and hardware needed for human deep space exploration. This mission is the first crewed flight under NASA’s Artemis campaign and is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send American astronauts to Mars.
The Artemis II events briefings will stream live on the agency’s YouTube channel and X account. Learn how to watch NASA content through a variety of platforms.
Following the briefings, NASA will host an Artemis II media day at NASA Johnson on Sept. 24, to showcase mission support facilities, trainers, and hardware for Artemis missions, as well as offer interview opportunities with leaders, flight directors, astronauts, scientists, and engineers.
Media who wish to participate in person must contact the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov and indicate which events they plan to attend. Confirmed media will receive additional details about participating in these events. A copy of NASA’s media accreditation policy is available on the agency’s website. Media accreditation deadlines for the astronaut candidate selection and Artemis II events are as follows:
U.S. media interested in attending in person must RSVP no later than 5 p.m., Wednesday, Sept. 17. International media without U.S. citizenship must RSVP no later than 5 p.m., Wednesday, Sept. 10. Media requesting in-person or virtual interviews with the astronaut candidates, Artemis experts, or the Artemis II crew must submit requests to the NASA Johnson newsroom by Wednesday, Sept. 17. In-person interview requests are subject to the credentialing deadlines noted above.
Information for the astronaut candidate selection and Artemis II events, including briefing participants, is as follows (all times Eastern):
Monday, Sept. 22
12:30 p.m.: 2025 Astronaut Candidate Selection Ceremony
Tuesday, Sept. 23
11 a.m.: Artemis II Mission Overview Briefing
Lakiesha Hawkins, acting deputy associate administrator, Exploration Systems Development Mission Directorate, NASA Headquarters Charlie Blackwell-Thompson, Artemis launch director, NASA’s Kennedy Space Center in Florida Judd Frieling, lead Artemis II ascent flight director, NASA Johnson Jeff Radigan, lead Artemis II flight director, NASA Johnson Rick Henfling, lead Artemis II entry flight director, NASA Johnson Daniel Florez, test director, Exploration Ground Systems, NASA Kennedy 1 p.m.: Artemis II Science and Technology Briefing
Matt Ramsey, Artemis II mission manager, NASA Headquarters Howard Hu, Orion Program manager, NASA Johnson Jacob Bleacher, manager, Science, Technology Utilization, and Integration, Exploration Systems Development Mission Directorate, NASA Headquarters Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 22, by emailing NASA Johnson’s newsroom.
Wednesday, Sept. 24
10 a.m.: Artemis II Crew News Conference
Reid Wiseman, commander Victor Glover, pilot Christina Koch, mission specialist Jeremy Hansen, mission specialist Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 23, by emailing NASA Johnson’s newsroom.
Learn more about how NASA leads human spaceflight efforts at:
https://www.nasa.gov/humans-in-space
-end-
Jimi Russell / Rachel Kraft
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / rachel.h.kraft@nasa.gov
Courtney Beasley / Chelsey Ballarte
Johnson Space Center, Houston
281-910-4989
courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Aug 20, 2025 LocationNASA Headquarters Related Terms
Artemis Artemis 2 Candidate Astronauts Humans in Space Mars View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This National Aviation Day graphic shows Orville Wright surrounded by the faces of some of NASA’s aeronautical innovators.NASA / Maria Werries The first “A” in NASA stands for Aeronautics – so naturally that means today, Aug. 19, National Aviation Day, is one of our favorite days all year!
National Aviation Day was first proclaimed in 1939 by President Franklin Roosevelt to celebrate the birthday of aviation pioneer Orville Wright, who, with his brother Wilbur, in 1903, were the first humans to achieve powered flight.
Each year since the President first marked the occasion, sky-faring Americans have come together on this date in an annual celebration of flight – a time to revel in spreading our wings and slipping the surly bonds of Earth.
All of us at NASA share in that celebration. We love everything about flight, whether it’s into space or within Earth’s atmosphere.
Our aeronautical innovators are dedicated to improving the design of airplanes to carry on pioneering new technologies in high-speed flight, airframes and propulsion methods, aerospace engineering modelling, and automating airspace and safety management.
Our heritage in aviation research goes back more than 100 years. We’ve helped air travel become a safe, efficient, reliable form of transportation. If you’re heading to an airport, keep an eye out for these NASA-developed aviation technologies you might see on your flight:
WINGLETSNASA studies led to development of vertical extensions that can be attached to wing tips in order to reduce aerodynamic drag without having to increase wingspan. Winglets help increase an airplane’s range, decrease fuel use, and today can be seen on airplanes everywhere.NASA CHEVRON NOZZLESWorking with its industry partners, NASA researchers determined an effective way to reduce noise levels on the ground and in the passenger cabin was to add saw tooth-shaped cut outs, or chevrons, to structures such as exhaust nozzles and cowlings of jet engines.NASA / The Boeing Company GLASS COCKPITS NASA created and tested the concept of replacing dial and gauge instruments with flat panel digital displays. The displays present information more efficiently and provide the flight crew with a more easily understood picture of the aircraft’s health and position.NASA Langley / Sean Smith How Will You Celebrate?
How else can you celebrate National Aviation Day? Here are seven ideas:
Visit your local science museum or NASA visitor center
Explore your local science center for exhibits about aviation and how an airplane flies. And if you live within a short drive from Norfolk, Virginia; Cleveland, or San Francisco, you might consider checking out the visitor centers associated with NASA’s Langley Research Center, Glenn Research Center, or Ames Research Center, respectively. These major NASA field centers play host to the majority of NASA’s aeronautics research. (NASA’s Armstrong Flight Research Center, the fourth of NASA’s aeronautics centers, is located within the restricted area of Edwards Air Force Base in California so they do not have a public visitor’s center.)
Watch an aviation-themed movie
There’s no shortage of classic aviation-themed movies available to watch in any format (streaming, DVD, cinema, library rentals, etc.), and with any snacks (popcorn, nachos, gummies, etc.). We dare not attempt a comprehensive list, but a good place to start is our documentary “X-59: NASA’s “Quesst” for Quiet Supersonic Flight” available to stream on NASA+.
Build an airplane
Why not? It doesn’t have to be big enough to actually fly in – plastic model kits of the world’s most historic aircraft can be just as rewarding and just as educational, especially for kids who might be thinking about a career as an engineer or technician. In fact, many astronauts will tell you their love of aviation and space began with putting models together as a child. Another idea: Grab some LEGO bricks and build the airplane of your dreams. Or make it easy on yourself, fold a paper airplane and shoot it across the room.
Take an introductory flight lesson
Pilots will tell you there is a wonderful sense of freedom in flying, not to mention the incredible views and the personal sense of accomplishment. At the same time, being a pilot is not for everyone, but you won’t know unless you try! Many general aviation airports in the nation have a flight school that may offer an introductory flight lesson at a discounted price. And if you want a taste of flight without leaving the ground, computer desktop flight simulators such as Microsoft Flight Simulator or X-Plane are popular choices and can get you into the virtual sky in short order.
Visit your local library or download a NASA e-book
Aviation-themed books, whether fact or fiction, are all over the shelves of your local library – literally. That’s because there’s no single Dewey Decimal number for aviation. A book about aviation history will be in a different section of the library than a book about how to design an airplane. And creative nonfiction books such as the Mark Vanhoenacker’s “Skyfaring,” or autobiographies such as Eileen Collins’ “Through the Glass Ceiling to the Stars,” are off on yet another shelf. Don’t hesitate to ask your librarian for help. And when you get back from the library, or while still there, jump online and check out the NASA e-books you can download and own for free.
Have a plane spotting picnic near an airport
At Washington’s National Airport, it’s Gravelly Point. In Tampa, Florida it’s International Mall. If you live near a major international airport, chances are you know the best place where the locals can go to watch aircraft take off and land up close. Be sure to take heed of any security restrictions about where you can and can’t go. But once you have your spot picked out, then load up your picnic basket and camp out for an evening of plane spotting. See how many different types of airplanes you can count or identify.
Follow what we’re doing to transform aviation
NASA’s aeronautical innovators are working to transform air transportation to meet the future needs of the global aviation community. Sounds like a big job, right? It is and there are many ways in which NASA is doing this. Improving an airplane’s aerodynamics, making airplanes more efficient and quieter, working with the Federal Aviation Administration to improve air traffic control – the list could go on for many thousands of more words. Bookmark our NASA Aeronautics topic page and follow us on social media @NASAaero.
So remember this National Aviation Day, NASA is with you when you fly!
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
Article 5 days ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
Article 2 weeks ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 19, 2025 Related Terms
Aeronautics Aeronautics Research Mission Directorate View the full article
-
By NASA
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 21 min read
A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission
Introduction
The NASA Soil Moisture Active Passive (SMAP) mission, launched in 2015, has over 10 years of global L-band radiometry observations. The low frequency [1.4 GHz frequency or 21 cm (8 in) wavelength] measurements provide information on the state of land surfaces in all weather conditions – regardless of solar illumination. A principal objective of the SMAP mission is to provide estimates of surface soil moisture and its frozen or thawed status. Over the land surface, soil moisture links the water, energy, and carbon cycles. These three cycles are the main drivers of regional climate and regulate the functioning of ecosystems.
The achievement of 10 years in orbit is a fitting time to reflect on what SMAP has accomplished. After briefly discussing the innovative measurement approach and the instrument payload (e.g., a radiometer and a regrettably short-lived L-band radar), a significant section of this article is devoted to describing the mission’s major scientific achievements and how the data from SMAP have been used to serve society (e.g., applied sciences) – including SMAP’s pathfinding role as Early Adopters. This content is followed by a discussion of how SMAP has dealt with issues related to radio frequency interference in the L-Band region, a discussion of the SMAP data products suite, future plans for the SMAP active–passive algorithm, and a possible follow-on L-band global radiometry mission being developed by the European Union’s Copernicus Programme that would allow for data continuity beyond SMAP. This summary for The Earth Observer is excerpted from a longer and more comprehensive paper that, as of this article’s posting, is being prepared for publication in the Proceedings of the Institute of Electrical and Electronics Engineers (IEEE).
SMAP Measurement Approach and Instruments
The SMAP primary and operating instrument is the L-band radiometer, which collects precise surface brightness temperature data. The radiometer includes advanced radio frequency interference (RFI) detection and mitigation hardware and software. The radiometer measures vertical and horizontal polarization observations along with the third and fourth Stokes parameters (T3 and T4) of the microwave radiation upwelling from the Earth. The reflector boom and assembly, which includes a 6 m (20 ft) deployable light mesh reflector, is spun at 14.6 revolutions-per-minute, which creates a 1000 km (621 mi) swath as the SMAP satellite makes its Sun-synchronous orbit of the Earth – see Figure 1. This approach allows coverage of the entire globe in two to three days with an eight-day exact repeat. The radiometer instrument is calibrated monthly by pointing it to the deep sky.
Figure 1. An artist’s rendering of the SMAP Observatory showing both the radiometer and radar. Figure credit: NASA/Jet Propulsion Laboratory/California Institute of Technology The original SMAP instrument design included a companion L-band radar, which operated from April through early July 2015, acquiring observations of co- and cross-polarized radar backscatter at a spatial resolution of about 1 km (0.6 mi) with a temporal revisit of about three days over land. This data collection revealed the dependence of L-band radar signals on soil moisture, vegetation water content, and freeze thaw state. The radar transmitter failed on July 7, 2015. Shortly thereafter, the radar receiver channels were repurposed to record the reflected signals from the Global Navigation Satellite System (GNSS) constellation in August 2015, making SMAP the first full-polarimetric GNSS reflectometer in space for the investigation of land surface and cryosphere.
Scientific Achievements from a Decade of SMAP Data
A decade of SMAP soil moisture observations have led to a plethora of scientific achievements. The data have been used to quantify the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. They have also been used to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction (NWP) models. They are also used to measure liquid water and thickness of ice sheets, and sea surface salinity. The subsections that follow describe how SMAP data are being put to use in myriad ways that benefit society.
Quantifying Processes that Link the Terrestrial Water, Energy, and Carbon Cycles
The primary SMAP science goal is to develop observational benchmarks of how the water, energy, and carbon cycles link together over land. Soil moisture is the variable state of the land branch of the water cycle. It links the water cycle to the energy cycle through limiting latent heat flux – the change in energy as heat exchanges when water undergoes a phase change, such as evapotranspiration at the land–atmosphere interface. Soil moisture also links the water and carbon cycles, which is evident through plant photosynthesis. SMAP global observations of soil moisture fields, in conjunction with remote sensing of elements of the energy and carbon cycles, can reveal how these three cycles are linked in the real world as a benchmark for weather and Earth system models.
Photosynthesis is down-regulated by both the deficit in water availability and the lack of an adequate amount of photosynthetically active radiation. Global maps reveal how soil moisture and light regulate photosynthesis – see Figure 2. These benchmark observational results can be used to assess how Earth system models link to the three main metabolic cycles of the climate system.
Figure 2. Observed regulation of photosynthesis by water availability [left] and light availability [right]. Blue denotes greater limitation. Photosynthesis rates for both maps determined using solar-induced fluorescence (SIF) measurements (mW/m2 nm sr) from the Tropospheric Ozone Monitoring Instrument (TROPOMI) on the European Union’s Copernicus Sentinel-5P mission. Water availability was determined using soil moisture (SM) measurements from the Soil Moisture Active Passive (SMAP) mission. Light availability was determined using measurements of photosynthetically active radiation (PAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua platforms. The resulting maps show the model slope (mW/m2/nm/sr) of the estimated SIF-SM relationship in the water-limited regime [left] and the model slope (10-3/nm/sr) of estimated SIF-PAR relationship in the light-limited regime [right]. Figure credit: Jonard et al (2022) in Biogeosciences Development of Improved Flood Prediction and Drought Monitoring Capability
SMAP products have also been widely used in applied sciences and natural hazard decision-support systems. SMAP’s observation-based soil moisture estimates offer transformative information for managing water-related natural hazards, such as monitoring agricultural drought – defined as a persistent deficit in soil moisture – and flood volumes – defined as the landscape’s water absorption capacity during precipitation events. The SMAP project produces a parallel, near-real-time data stream that is accessed by a number of federal and state agencies in decision-support systems related to drought monitoring, food security, and landscape inundation and trafficability.
Enhancing Weather and Climate Forecasting Skill
SMAP’s enhancement of numerical weather prediction, model skill, and reduction of climate model projection uncertainties is based on the premise of the contribution of solar energy to weather and climate dynamics. Soil moisture has a strong influence on how available solar energy is partitioned into components (e.g., sensible heat flux versus latent heat flux) over land. The influence propagates through the atmospheric boundary layer and ultimately influences the evolution of weather.
To give an example, land surface processes can affect the evolution of the U.S. Great Plains low-level jets (GPLLJs). These jets drive mesoscale convective weather systems. Previous studies have shown that GPLLJs are sensitive to regional soil moisture gradients. Assimilation of SMAP soil moisture data improves forecasts of weakly synoptically forced or uncoupled GPLLJs compared to forecasts of cyclone-induced coupled GPLLJs. For example, the NASA Unified Weather Research and Forecasting Model, with 75 GPLLJs at 9 km (5.6 mi) resolution both with and without SMAP soil moisture data assimilation [SMAP data assimilation (DA) and no-DA respectively], shows how the windspeed mean absolute difference between SMAP DA and no-DA increase approximately linearly over the course of the simulation with maximum differences at 850 hPa (or mb) for the jet entrance and core – see Figure 3.
Figure 3. The impact of adding soil moisture data [SMAP data assimilation (DA) minus no-DA] to a model simulation from theNASA Unified Weather Research and Forecasting Model (NU-WRF)) of the Great Plains Low Level Jet (GPLLJ). The results show the mean over 75 independent GPLLJ events. The plots correspond to wind speed difference with height (y-axis) and time (hours on x-axis). The panels are for jet entrance [left], jet core [middle] and jet exit [right]. Soil moisture data assimilation enhances the intensity of the simulated GPLLJ. The stippling corresponds to 99% statistical confidence. Figure credit: Ferguson (2020) in Monthly Weather Review Measuring Liquid Water Content and Thickness of Ice Sheets
The mass loss of Greenland and Antarctica ice sheets contributes to sea-level rise – which is one of the most impactful and immediate damaging consequences of climate change. The melt rates over the last few years have raised alarm across the globe and impact countries with coastal communities. The cryosphere community has raised a call-to-action to use every observing system and model available to monitor the patterns and rates of land ice melt.
Surface melt affects the ice cap mass loss in many ways: the direct melt outflow from the ablation zone of the Greenland ice sheet, the structural change of the percolation zone of the Greenland ice sheet, changes in the melt water retention and outflow boundaries, changes in the structure of the Antarctic ice shelves, and destabilization of the buttressing of the glacier outflow through various processes (e.g., hydrofracturing and calving). The long-term climate and mass balance models rely on accurate representation of snow, firn, and ice processes to project the future sea level.
The SMAP L-band radiometer has relatively long wavelength [21 cm (8 in)] observations compared to other Earth-observing instruments. It enables the measurement of liquid water content (LWC) in the ice sheets and shelves as it receives the radiation from the deep layers of the snow/firn/ice column. Relatively high LWC values absorb the emission only partially, making the measurement sensitive to different liquid water amounts (LWA) in the entire column. Figure 4 shows the cumulative LWA for 2015–2023 based on SMAP measurements.
Figure 4. Total annual sum of SMAP daily liquid water amount (LWA) for 2015–2023. The black solid line on each map represents grid edges, and the grey color mask inside the ice sheet indicates melt detections by decreasing brightness temperature. Figure Credit: Andreas Colliander [Finnish Meteorological Institute]. The SMAP L-band radiometer has also been used to derive the thickness of thin sea ice [Soil Moisture and Ocean Salinity (SMOS) mission have been recalibrated to SMAP, using the same fixed incidence angle. The data show strong agreement and demonstrate clear benefits of a combined dataset. The L-band thin ice thickness retrievals provide a useful complement to higher-resolution profiles of thicker ice obtained from satellite altimeters (e.g. ESA’s CryoSat-2 and NASA’s Ice, Clouds and land Elevation Satellite–2 missions).
Extending and Expanding the Aquarius Sea Surface Salinity Record
The joint NASA/Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D (Aquarius), which operated from 2011–2015, used an L-band radiometer and an L-band scatterometer to make unprecedented monthly maps of global sea surface salinity at 150-km (93-mi) resolution. The SMAP L-band radiometer has not only extended the sea surface salinity record in the post-Aquarius period, it has also increased the spatial resolution and temporal frequency of these measurements because of its larger reflector and wider swath. The increased resolution and revisit allow new and unprecedented perspectives into mixing and freshwater events, coastal plume tracking, and other more local oceanic features.
Providing New Perspectives on Global Ecology and Plant Water Stress
The L-band vegetation optical depth (VOD) – which is related to water content in vegetation – has been retrieved simultaneously with soil moisture using SMAP’s dual-polarized brightness temperatures and is being used to better understand global ecology. Water in above-ground vegetative tissue attenuates and thus depolarizes surface microwave emission, and VOD quantifies this effect. SMAP can provide global observations of VOD in all weather conditions with a two to three day temporal frequency. Changes in VOD indicate either plant rehydration or growth. Ecologists benefit from this new ecosystem observational data, which augments optical and near-infrared vegetation indices [e.g., leaf area index (LAI)] and has a higher temporal frequency that is not affected by clouds and does not saturate as rapidly for dense vegetation.
Examples of how the data have been used include deciphering the conditions when vegetation uptakes soil water only for rehydration (i.e., VOD increase with no LAI change) compared to plant growth (i.e., increase in both VOD and LAI). The applications of VOD are increasing and the ecology community views this product as a valuable additional perspective on soil–plant water relations.
At the moment, this measurement has no ground-based equivalent. Therefore, field experiments with airborne instruments and ground sampling teams are needed to firmly establish the product as a new observational capability for global ecology.
Applied Science Collaboration: SMAP Observations Serving Society
The SMAP project has worked with the NASA Earth Science Division Applied Sciences Program (now known as Earth Science to Action) and the natural hazards monitoring and forecasting communities for pre- and post-launch implementation of SMAP products in their operations. In some operational applications, for which long-term data continuity is a requirement, the SMAP data are still used for assessment of current conditions, as well as research and development.
The Original Early Adopters
Prior to its launch, the SMAP mission established a program to explore and facilitate applied and operational uses of SMAP mission data products in decision-making activities for societal benefit. To help accomplish these objectives, SMAP was the first NASA mission to create a formal Applications Program and an Early Adopter (EA) program, which eventually became a requirement for all future NASA Earth Science directed satellite missions. SMAP’s EA program increases the awareness of mission products, broadens the user community, increases collaboration with potential users, improves knowledge of SMAP data product capabilities, and expedites the distribution and uses of mission products after launch.
SMAP Data in Action
Several project accomplishments have been achieved primarily through an active continuous engagement with EAs and operational agencies working towards national interests. SMAP soil moisture data have been used by the U.S. Department of Agriculture (USDA) for domestic and international crop yield applications. For example the USDA’s National Agricultural Statistics Service (NASS) conducts a weekly survey of crop progress, crop condition, and soil moisture condition for U.S. cropland. NASS surveys and publishes state-level soil moisture conditions in the NASS Crop Progress Report.
The traditional field soil moisture survey is a large-scale, labor-intensive data collection effort that relies heavily on responses from farmers, agricultural extension agents and/or other domain experts for field observations. One weakness of these observations is that they are based on subjective assessments rather than quantitative measures and can lead to spatial inconsistency based on the human responses from the respective counties. Moreover, the NASS Crop Progress Reports do not provide specific geolocation information for the assessed soil moisture conditions – which are extremely useful metadata to provide to data users. NASS implemented the use of SMAP observations in their weekly reports during the growing period (March–November). SMAP maps estimated root-zone soil moisture for the week of November 14–20, 2022, over NASS Pacific (California and Nevada) and Delta (Arkansas, Mississippi and Louisiana) regional domains—see Figure 5.
Figure 5. SMAP-based soil moisture estimates for California, Nevada, Arkansas, Mississippi, and Louisiana, used by the U.S. Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) in their weekly report covering November 14–20, 2022. These data are available for selected states at the NASS website linked in the text. Figure Credit: NASS SMAP Radio Frequency Interference Detection and Mitigation
Although SMAP operates within the protected frequency allocation of 1400–1427 MHz, the radiometer has been impacted by radio frequency interference over the mission lifetime. Unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating adjacent to the allocated spectrum have been observed in SMAP measurements since its launch. The previously launched SMOS and Aquarius radiometers provide evidence of global RFI at L-band. Consequently, SMAP was designed to incorporate a novel onboard digital detector on the back end to enable detection and filtering of RFI. The radiometer produces science data in time and frequency, enabling the use of multiple RFI detection methods in the ground processing software.
On-orbit data demonstrate that the RFI detection and filtering performs well and improves the quality of SMAP brightness temperature measurements. The algorithms are most effective at filtering RFI that is sparse in time and frequency, with minimal impact on the noise equivalent delta temperature (NEDT) – a measure of the radiometer sensitivity. Some areas of the globe remain problematic as RFI that is very high level and persistent results in high percentages of data loss due to removal of contaminated data. A global map of RFI detection rate for January 2025 shows a large contrast between Eastern and Western Hemispheres and between Northern and Southern Hemispheres – see Figure 6. Regions of isolated RFI and severe RFI correspond to populated areas. A detection rate of 100% means all pixels are flagged and removed, resulting in data loss. Analysis of spectral information reveal many sources are likely terrestrial radar systems; however, many wideband, high-level sources and low-level, non-radar sources also persist. Over areas of geopolitical conflict, the time-frequency data show interference covering the entire radiometer receiver bandwidth.
Figure 6. Percentage of pixels on a 0.25° grid for January 2025 that have been flagged for removal by the Soil Moisture Active Passive radio frequency interference detection algorithms. Figure Credit: Priscilla N. Mohammed [GSFC] The RFI challenge is further addressed through official spectrum management channels and formal reports that include the geolocated coordinates of sources, interference levels, frequency of occurrence during the observed period, and spectral information – all of which aid field agents as they work to identify potential offenders. Reports are submitted to the NASA Spectrum office and then forwarded to the country of interest through the Satellite Interference Reporting and Resolution System.
SMAP Science Data Products
The current suite of SMAP science data products is available in the Table. The principal data products are grouped in four levels designated as L1–4. The L1 products are instrument L-band brightness temperature in Kelvin and include all four Stokes parameters (i.e., horizonal and vertical polarization as well as third and fourth Stokes). Both 6:00 AM equatorial crossing (descending) and 6:00 PM equatorial crossing (ascending data) are contained in the products. The user has access to quality flags of the conditions under which measurements are available for each project. The L1B products are time-ordered and include fore and aft measurements. L1C products are on the Equal-Area Scalable Earth V2 (EASE2) grid with polar and global projections. L2 data products are geophysical retrievals (i.e., soil moisture, VOD, and binary freeze/thaw classification on a fixed Earth grid). The L2 half-orbit products are available to the public within a day of acquisition. L3 products are daily composites and include all half-orbits for that day.
The SMAP project also produces L4 data that are the result of data assimilation. The L4 products take advantage of other environmental observations, such as precipitation, air temperature and humidity, radiative fluxes at the land surface, and ancillary land use and soil texture information, to produce estimates of surface [nominally 0–5 cm (0–2 in)] and subsurface (e.g., root-zone up to a meter) soil moisture. The data assimilation system is a merger of model and measurements and hence resolves the diurnal cycle of land surface conditions. The data assimilation system also provides estimates of surface fluxes of carbon, energy, and water, such as evaporation, runoff, gross primary productivity (GPP), and respiration. The difference between GPP and respiration is the net ecosystem exchange, which is the net source/sink of the carbon cycle over land.
The SMAP suite of products also include near-real-time (NRT) brightness temperature and soil moisture products for use in operational weather forecast applications. The NRT product targets delivery to users within three hours of measurement acquisition. The NRT uses predicted SMAP antenna pointing (instead of telemetry) and model predicted ancillary data (soil temperature) in order to support operational centers that require more than three hours of data products for updating weather forecast models. To date SMAP has met its required and target (for NRT) latency requirements.
Two other data projects merge synergistically with other (colocated) satellite measurements. The SPL2SMAP_S merges SMAP L-band radio brightness measurements with C-band synthetic aperture radar (SAR) measurements from the ESA Copernicus Sentinel-1 mission. The SAR data have high resolution and allow the generation of 1 and 3 km (0.62 and 1.8 mi) merged surface soil moisture estimates. The high resolution soil moisture information, however, is only available when there is coincident SMAP and Sentinel-1 measurements. The refresh rate of this product is limited and can be as long as 12 days.
The merged SMOS–SMAP passive L-band radiometry data allows the generation of global, near daily surface soil moisture estimates, which are required to resolve fast hydrologic processes, such as gravity drainage and recharge flux. These parameters are only partially resolved with the SMAP, with a two to three day data refresh rate. This product interpolates the multi-angular SMOS data to the SMAP 40º incident angle and uses all SMAP algorithms, including correction of waterbody impact on SMAP brightness temperature, and ancillary data for geophysical inversions to soil moisture and VOD, ensuring consistency. The combined SMAP–SMOS data product may not be available daily across locations, such as Japan, parts of China, and the Middle East, where RFI affects data collection.
Table. Soil Moisture Active Passive suite of science products are available through the National Snow and Ice Data Center, one of NASA’s Distributed Active Archive Centers.
Product Type Product description Resolution (Gridding) Granule Extent SPL1BTB Geolocated, calibrated brightness temperature in time order 36 km Half Orbit SPL1CTB_E Backus-Gilbert interpolated, calibrated brightness temperature in time order (9 km) Half Orbit SPL1CTB Geolocated, calibrated brightness temperature on Equal-Area Scalable Earth V2 (EASE2) grid 36 km Half Orbit SPL1CTB_E Backus-Gilbert interpolated, calibrated brightness temperature on EASE2 grid (9 km) Half Orbit SPL2SMP Radiometer soil moisture and vegetation optical depth 36 km Half Orbit SPL2SMP_E Radiometer soil moisture and vegetation optical depth based on SPL1CTB (9 km) Half Orbit SPL2SMAP_S SMAP radiometer/Copernicus Sentinel-1 soil moisture 3 km Sentinel-1 SPL3SMP Daily global composite radiometer soil moisture and vegetation optical depth based on SPL1CTB 36 km Daily–Global SPL3SMP_E Daily global composite radiometer soil moisture and vegetation optical depth based on SPL1CTB_E (9 km) Daily–Global SPL3FTP Daily composite freeze/thaw state based on SPL1CTB 36 km Daily–Global SPL3FTP_E Daily composite freeze/thaw state based on SPL1CTB_E (9 km) Daily–Global SPL4SMAU Surface and Root Zone soil moisture 9 km 3 hours – Global SPL4CMDL Carbon Net Ecosystem Exchange 9 km Daily–Global SPL1BTB_NRT Near Real Time Geolocated, calibrated brightness temperature in time order 36 km Half Orbit SPL2SMP_NRT Near Real Time Radiometer soil moisture 36 km Half Orbit L2/L3 SMOS SM SMOS soil moisture and VOD based on SMAP algorithms (9 km) Half Orbit/Daily Global Future Directions for the SMAP Active–Passive Algorithm
Although the SMAP radar failed not long after launch, the data that were collected have been used to advance the development of the SMAP Active–Passive (AP) algorithm, which will be applied to the combined SMAP radiometer data and radar data from the NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar [NISAR] mission, a recently-launched L-Band Synthetic Aperture mission to produce global soil moisture at a spatial resolution of 1 km (0.62 mi) or better. The high resolution product can advance applications of SMAP data (e.g., agricultural productivity, wildfire, and landslide monitoring).
Data Continuity Beyond SMAP
A forthcoming mission meets some – but not all – of the SMAP measurement requirements and desired enhancements. The European Union’s Copernicus Program Copernicus Imaging Microwave Radiometer (CIMR) mission is a proposed multichannel microwave radiometry observatory that includes L-band and four other microwave channels sharing a large mesh reflector. The mesh reflector is similar to the one that is used on SMAP, but larger. The successful SMAP demonstration of rotating large deployable mesh antennas for Earth observations has been useful to the CIMR design.
In terms of RFI detection capability, CIMR will also use an approach that is similar to SMAP. With regard to instrument thermal noise (NEDT) and data latency, CIMR meets or comes close to the next-mission desired characteristics and equals or exceeds SMAP in most of the attributes. The native L-band resolution of CIMR is ~60 km (37 mi); however, the measurements are coincident and higher-resolution measurements in this configuration allow reconstruction of L-band radiometry at higher resolution than CIMR’s L-band. It may be possible to combine the L- and C-bands and achieve a reconstructed ~15 km (9 mi) L-band product based on the coincident and overlapping measurements. A refresh rate of one day is possible with the wide-swath characteristic of CIMR.
CIMR is currently in development; the first version, CIMR-1A, is expected to launch within this decade and the second version, CIMR-1B, in the mid 2030s. Since the Copernicus program supports operational activities (e.g., numerical weather prediction), the program includes plans for follow-on CIMR observatories so that the data record will be maintained without gaps in the future.
Conclusions
The SMAP mission was launched in 2015 and has produced over 10 years of science data. Because of its unique instrument and operating characteristics, the global low-frequency microwave radiometry with the SMAP observatory has resulted in surface soil moisture, vegetation optical depth, and freeze/thaw state estimates that outperform past and current products. The data have been widely used in the Earth system science community and also applied to natural hazards applications.
The Earth system science and application communities are actively using the decade-long, high-quality global L-band radiometry. The intensity and range of SMAP science data usage is evident in the number of peer-reviewed journal publications that contain SMAP or Soil Moisture Active Passive in their title or abstract and use SMAP data in the study (i.e., search: www.webofscience.com data-base). The authors acknowledge that many publications escape this particular query approach. Currently the bibliography includes over 1700 entries and over 20,000 citations spanning several elements of Earth system science, including hydrologic science and regional and global water cycle, oceanic and atmospheric sciences, cryosphere science, global ecology as well as microwave remote sensing technologies.
To Learn More About SMAP
A more comprehensive bibliography of studies published based on SMAP data products, a set of one-page SMAP science and applications highlights in standardized format, and SMAP project documents including assessment reports are all available online via the links provided.
Acknowledgements
The authors wish to acknowledge the contributions of the SMAP Science Team, the SMAP Algorithm Development Team, and the SMAP Project Office engineers and staff. All of these teams contribute to the ongoing SMAP science product generation and uses reported in this article.
Dara Entekhabi
Massachusetts Institute of Technology
darae@mit.edu
Simon Yueh
Jet Propulsion Laboratory/California Institute of Technology
simon.h.yueh@jpl.nasa.gov
Rajat Bindlish
NASA Goddard Space Flight Center
rajat.bindlish@nasa.gov
Mark Garcia
Jet Propulsion Laboratory/California Institute of Technology
mark.d.garcia@jpl.nasa.gov
Jared Entin
NASA Headquarters
jared.k.entin@nasa.gov
Craig Ferguson
NASA Headquarters
craig.r.ferguson@nasa.gov
Share
Details
Last Updated Aug 18, 2025 Related Terms
Earth Science View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
GRX-810 is a new metal alloy developed by NASA for 3D printing parts that can withstand the extreme temperatures of rocket engines, allowing affordable printing of high-heat parts.NASA Until now, additive manufacturing, commonly known as 3D printing, of engine components was limited by the lack of affordable metal alloys that could withstand the extreme temperatures of spaceflight. Expensive metal alloys were the only option for 3D printing engine parts until NASA’s Glenn Research Center in Cleveland, Ohio, developed the GRX-810 alloy.
The primary metals in the GRX-810 alloy include nickel, cobalt, and chromium. A ceramic oxide coating on the powdered metal particles increases its heat resistance and improves performance. Known as oxide dispersion strengthened (ODS) alloys, these powders were challenging to manufacture at a reasonable cost when the project started.
However, the advanced dispersion coating technique developed at Glenn employs resonant acoustic mixing. Rapid vibration is applied to a container filled with the metal powder and nano-oxide particles. The vibration evenly coats each metal particle with the oxide, making them inseparable. Even if a manufactured part is ground down to powder and reused, the next component will have the qualities of ODS.
The benefits over common alloys are significant – GRX-10 could last up to a year at 2,000°F under stress loads that would crack any other affordable alloy within hours. Additionally, 3D printing parts using GRX-810 enables more complex shapes compared to metal parts manufactured with traditional methods.
Elementum 3D, an Erie, Colorado-based company, produces GRX-810 for customers in quantities ranging from small batches to over a ton. The company has a co-exclusive license for the NASA-patented alloy and manufacturing process and continues to work with the agency under a Space Act Agreement to improve the material.
“A material under stress or a heavy load at high temperature can start to deform and stretch almost like taffy,” said Jeremy Iten, chief technical officer with Elementum 3D. “Initial tests done on the large-scale production of our GRX-810 alloy showed a lifespan that’s twice as long as the small-batch material initially produced, and those were already fantastic.”
Commercial space and other industries, including aviation, are testing GRX-810 for additional applications. For example, one Elementum 3D customer, Vectoflow, is testing a GRX-810 flow sensor. Flow sensors monitor the speed of gases flowing through a turbine, helping engineers optimize engine performance. However, these sensors can burn out in minutes due to extreme temperatures. Using GRX-810 flow sensors could improve airplane fuel efficiency, reduce emissions and hardware replacements.
Working hand-in-hand with industry, NASA is driving technology developments that are mutually beneficial to the agency and America’s space economy. Learn more: https://spinoff.nasa.gov/
Read More Share
Details
Last Updated Aug 15, 2025 Related Terms
Technology Transfer & Spinoffs Glenn Research Center Spinoffs Technology Transfer Explore More
2 min read NASA Seeks Industry Feedback on Fission Surface Power
Article 22 hours ago 2 min read NASA Glenn Earns Commercial Invention of the Year Award
Article 1 day ago 2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Glenn Research Center
3D-Printed Habitat Challenge
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.