Members Can Post Anonymously On This Site
Aubrie Henspeter: Leading Commercial Lunar Missions
-
Similar Topics
-
By NASA
2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.
“As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”
In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.
NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.
NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.
NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.
Learn more about NASA’s SCaN Program at:
https://www.nasa.gov/scan
Share
Details
Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
Communicating with Missions
Communications Services Project
Commercial Space News
Near Space Network
View the full article
-
By NASA
4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
Keya Shah
Softgoods Engineering Technologist
Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
“SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
“Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
“There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
“It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
“NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
Felix Arwen
Softgoods Engineer
Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
“While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
“Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
Are you interested in joining the next NASA SUITS challenge? Find more information here.
The next challenge will open for proposals at the end of August 2025.
About the Author
Sumer Loggins
Share
Details
Last Updated Jun 10, 2025 Related Terms
Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Keith Barr was born only months before the historic Apollo 11 landing in 1969. While he was too young to witness that giant leap for mankind, the moment sparked a lifelong fascination that set him on a path to design technology that will carry astronauts farther into space than ever before.
Today, Barr serves as a chief engineer and Orion Docking Lidar Field Test lead at NASA’s Johnson Space Center in Houston. He spearheads the field testing of docking lidars for the Orion spacecraft, which will carry astronauts to the Moon on the Artemis III mission. These lidars are critical to enabling Orion to autonomously dock with the human landing system on Artemis III — the mission that will land astronauts near the Moon’s South Pole for the first time in history.
Keith Barr prepares for a wind lidar test flight in one of the U.S. Navy’s Twin Otter aircraft in support of the AC-130 Gunship lidar program. “The Mercury, Gemini, and Apollo missions are some of humanity’s greatest technical achievements,” he said. “To be part of the Artemis chapter is a profound honor.”
In recognition of his contributions, Barr was selected as a NASA Space Flight Awareness Honoree in 2025 for his exceptional dedication to astronaut safety and mission success. Established in 1963, NASA’s Space Flight Awareness Program celebrates individuals who play a vital role in supporting human spaceflight. The award is one of the highest honors presented to the agency’s workforce.
With a career spanning over 25 years at Lockheed Martin, Barr is now recognized as a renowned leader in lidar systems—technologies that use laser light to measure distances. He has led numerous lidar deployments and test programs across commercial aviation, wind energy, and military markets.
In 2019, Barr and his team began planning a multi-phase field campaign to validate Orion’s docking lidars under real-world conditions. They repurposed existing hardware, developed a drone-based simulation system, and conducted dynamic testing at Lockheed Martin facilities in Littleton, Colorado, and Santa Cruz, California.
In Littleton, the team conducted two phases of testing at the Space Operations Simulation Center, evaluating performance across distances ranging from 50 meters to docking. At the Santa Cruz facility, they began much farther out at 6,500 meters and tested down to 10 meters, just before the final docking phase.
Of all these efforts, Barr is especially proud of the ingenuity behind the Santa Cruz tests. To simulate a spacecraft docking scenario, he repurposed a lidar pointing gimbal and test trailer from previous projects and designed a drone-based test system with unprecedented accuracy.
“An often-overlooked portion of any field campaign is the measurement and understanding of truth,” he said. “The system I designed allowed us to record lidar and target positions with accuracy never before demonstrated in outdoor docking lidar testing.”
Testing at the Santa Cruz Facility in California often began before sunrise and continued past sunset to complete the full schedule. Here, a drone hovers at the 10-meter station-keeping waypoint as the sun sets in the background. The test stand at the Santa Cruz Facility had once been used for Agena upper stage rockets—a key piece of hardware used during the Gemini program in the 1960s. “We found a Gemini-era sticker on the door of the test bunker—likely from the time of Gemini VIII, the first space docking completed by Neil Armstrong and David Scott,” Barr said. “This really brought it home to me that we are simply part of the continuing story.”
Keith Barr operates a wind lidar during a live fire test in an AC-130 Gunship aircraft. He is seated next to an open door while flying at 18,000 feet over New Mexico in January 2017. Barr spent more than two decades working on WindTracer—a ground-based Doppler wind lidar system used to measure wind speed and turbulence at airports, wind farms, and in atmospheric research.
The transition from WindTracer to Orion presented new challenges. “Moving onto a space program has a steep learning curve, but I have found success in this new arena and I have learned that I can adapt and I shouldn’t be nervous about the unknown,” he said. “Learning new technologies, applications, and skills keeps my career fun and exciting and I look forward to the next giant leap—whatever it is.”
Keith Barr stands beside the Piper Cherokee 6 aircraft during his time as a captain for New England Airlines. Barr’s passion for flight moves in tandem with his pursuit of innovation. Over his career, he has flown over 1.6 million miles on commercial airlines. “I often joke that I’m on my fourth trip to the Moon and back—just in economy class,” he said.
Before specializing in lidar systems, Barr flew as a captain and assistant chief pilot at New England Airlines, operating small aircraft like the Piper Cherokee 6 and the Britten-Norman Islander.
He also worked at the National Center for Atmospheric Research, contributing to several NASA airborne missions aimed at unraveling the science behind global ozone depletion.
Keith Barr boards NASA’s DC-8 aircraft at Ames Research Center in California before heading to Salina, Kansas, to support a 1996 research mission studying how airplane emissions affect clouds and the atmosphere. As Barr reflects on his journey, he hopes to pass along a sense of legacy to the Artemis Generation. “We are in the process of writing the next chapter of human space exploration history, and our actions, successes, and troubles will be studied and analyzed well into the future,” he said. “We all need to consider how our actions will shape history.”
Explore More
3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
Article 6 days ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 6 days ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
Article 2 weeks ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A digital rendering of the NASA-supported commercial space station, Vast’s Haven-1, which will provide a microgravity environment for crew, research, and in-space manufacturing.Vast NASA-supported commercial space station, Vast’s Haven-1, recently completed a test of a critical air filter system for keeping future astronauts healthy in orbit. Testing confirmed the system can maintain a safe and healthy atmosphere for all planned Haven-1 mission phases.
Testing of the trace contaminant control system was completed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of a reimbursable Space Act Agreement. Vast also holds an unfunded Space Act Agreement with NASA as part of the second Collaborations for Commercial Space Capabilities initiative.
Adrian Johnson, air chemist at NASA’s Marshall Space Flight Center in Huntsville, Alabama, operates the Micro-GC, which is used to measure carbon monoxide levels, during a trace contaminant control system test in the environmental chamber.NASA The subsystem of the environmental control and life support system is comprised of various filters designed to scrub hazardous chemicals produced by both humans and materials on the commercial station. During the test, a representative chemical environment was injected into a sealed environmental chamber, and the filtration system was turned on to verify the trace contaminant control system could maintain a healthy atmosphere.
“Testing of environmental control systems and subsystems is critical to ensure the health and safety of future commercial space station crews,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Through NASA’s agreements with Vast and our other industry partners, the agency is contributing technical expertise, technologies, services, and facilities to support companies in the development of commercial stations while providing NASA important insight into the development and readiness to support future agency needs and services in low Earth orbit.”
NASA-supported commercial space station, Vast’s Haven-1, trace contaminant control filters and support hardware pictured within the environmental chamber at the agency’s Marshall Space Flight Center, Huntsville, Alabama.NASA Experts used the same environmental chamber at Marshall to test the International Space Station environmental control and life support system.
The knowledge and data gained during the recent testing will help validate Vast’s Haven-1 and support future Haven-2 development.
NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. NASA plans to procure services from one or more companies following the design and development phase as part of the agency’s strategy to become one of many customers for low Earth orbit stations.
For more information about commercial space stations, visit:
www.nasa.gov/commercialspacestations
Keep Exploring Discover More Topics
Commercial Space Stations in Low Earth Orbit
NASA is supporting the development of commercially owned and operated space stations in low Earth orbit from which the agency,…
Low Earth Orbit Economy
Commercial Crew Program
NASA’s Low Earth Orbit Microgravity Strategy
View the full article
-
By NASA
5 Min Read NASA Knows: What is Lunar Regolith? (Grades 5-8)
This article is for students grades 5-8.
The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith. It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
What is lunar regolith like?
Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft! In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
Is regolith harmful to astronauts?
The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
Can regolith damage NASA equipment?
Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
All of this can make exploring the Moon much more difficult and even dangerous!
What is NASA doing to understand lunar regolith?
NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
The more NASA knows about how regolith behaves, the better they can plan for safe missions!
Career Corner
Many types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
Explore More
Making Regolith Activity
Watch: Mitigating Lunar Dust
Watch: NASA SCALPSS
Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
Explore More For Students Grades 5-8
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.