Jump to content

What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


Recommended Posts

  • Publishers
Posted

6 min read

What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years

One year on, NASA scientists are still making huge discoveries about the largest geomagnetic storm to hit Earth in two decades, the Gannon storm. The findings are helping us better understand and prepare for the ways in which the Sun’s activity can affect us.

On May 10, 2024, the first G5 or “severe” geomagnetic storm in over two decades hit Earth. The event did not cause any catastrophic damages, but it did produce surprising effects on Earth. The storm, which has been called the best-documented geomagnetic storm in history, spread auroras to unusually low latitudes and produced effects spanning from the ground to near-Earth space. Data captured during this historic event will be analyzed for years to come, revealing new lessons about the nature of geomagnetic storms and how best to weather them. Credit: NASA/Joy Ng

One year ago today, representatives from NASA and about 30 other U.S. government agencies gathered for a special meeting to simulate and address a threat looming in space. The threat was not an asteroid or aliens, but our very own life-giving Sun.

The inaugural Space Weather Tabletop Exercise was supposed to be a training event, where experts could work through the real-time ramifications of a geomagnetic storm, a global disruption to Earth’s magnetic field. Driven by solar eruptions, geomagnetic storms can decimate satellites, overload electrical grids, and expose astronauts to dangerous radiation. Minimizing the impacts of such storms requires close coordination, and this meeting was their chance to practice.

Then, their simulation turned into reality.

“The plan was to run through a hypothetical scenario, finding where our existing processes worked and where they needed improvement,” said Jamie Favors, director of NASA’s Space Weather Program at NASA Headquarters in Washington. “But then our hypothetical scenario was interrupted by a very real one.”

On May 10, 2024, the first G5 or “severe” geomagnetic storm in over two decades hit Earth. The event, named the Gannon storm in memory of leading space weather physicist Jennifer Gannon, did not cause any catastrophic damages. But a year on, key insights from the Gannon storm are helping us understand and prepare for future geomagnetic storms.

A detailed, fiery image of the Sun showing bright solar flares and textured surface, with a small inset at the bottom right comparing the tiny size of Earth to the massive scale of the Sun.
NASA’s Solar Dynamics Observatory captured this image of the Sun on May 7, 2024, in extreme ultraviolet light (at a wavelength of 304 Ångstroms). At center, the active region that instigated the Gannon storm stretches approximately 17 times the size of Earth. (A scaled image of Earth is inset for size reference.) In early May 2024, the active region released a chain of powerful solar eruptions, including several coronal mass ejections, or CMEs — giant clouds of solar particles — that merged to form a superstorm that reached Earth on May 10. Ahead of the storm, the National Oceanic and Atmospheric Administration, or NOAA, issued its first severe geomagnetic storm watch in almost two decades.
NASA/Helioviewer

Storm Consequences

The Gannon storm had effects on and off our planet.

On the ground, some high-voltage lines tripped, transformers overheated, and GPS-guided tractors veered off-course in the Midwestern U.S., further disrupting planting that had already been delayed by heavy rains that spring.

A green tractor with yellow wheels pulls a red trailer across a flat, dirt-covered field with some trees, a field of green plants, and a partly cloudy sky in the background.
Some modern tractors use GPS to help farmers plant efficiently and maximize crop yields. During the Gannon storm in May 2024, however, certain GPS-guided tractor models veered off course or stopped working, disrupting or delaying planting for many U.S. farmers.
Storyblocks

“Not all farms were affected, but those that were lost on average about $17,000 per farm,” said Terry Griffin, a professor of Agricultural Economics at Kansas State University. “It’s not catastrophic, but they’ll miss it.”

In the air, the threat of higher radiation exposure, as well as communication and navigation losses, forced trans-Atlantic flights to change course.


May%2011%202024%20flight%20patterns.png
May%2018%202024%20flight%20patterns.png
May 11, 2024
May 18, 2024

May%2011%202024%20flight%20patterns.png?

May%2018%202024%20flight%20patterns.png?

May%2011%202024%20flight%20patterns.png?
May%2018%202024%20flight%20patterns.png?

May 11, 2024

May 18, 2024

Before and After

Trans-Atlantic Flights Rerouted during Gannon Storm

May 11, 2024 – May 18, 2024


During the Gannon storm on May 10 and 11, 2024, many trans-Atlantic flights took more southerly routes across the ocean to avoid the risk of higher radiation for passengers and crew, as well as to avoid potential communication and navigation losses closer to the North Pole. The first image shows a snapshot of flight patterns on May 11, 2024, at 3:30 UTC (11:30 p.m. EDT on May 10) during the Gannon storm, when flights were redirected to more southern routes. The second image shows the flight patterns one week later, on May 18, 2024, at 3:30 UTC as flights followed their typical route. Credit: Flightradar24

During the storm, Earth’s upper atmospheric layer called the thermosphere heated to unusually high temperatures. At 100 miles altitude, the temperature typically peaks at 1,200 degrees Fahrenheit, but during the storm it surpassed 2,100 degrees Fahrenheit. NASA’s GOLD (Global-scale Observations of the Limb and Disk) mission observed the atmosphere expanding from the heat to create a strong wind that lofted heavy nitrogen particles higher.

A circular heatmap shows a swirling pattern of colors, with red and yellow regions indicating higher values, and blue and green areas showing lower values. The overlay covers the Atlantic Ocean and parts of surrounding continents.
The unique swirls in this image of GOLD data, show the ratio of lighter oxygen to nitrogen — a key atmospheric indicator — that exhibited a previously unseen structure in Earth’s thermosphere.
Evans et al. 2024

In orbit, the expanded atmosphere increased drag on thousands of satellites. NASA’s ICESat-2 lost altitude and entered safe mode while NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat deorbited prematurely five months after the storm. Others, such as the European Space Agency’s Sentinel mission, required more power to maintain their orbits and perform maneuvers to avoid collisions with space debris.

The storm also dramatically changed the structure of an atmospheric layer called the ionosphere. A dense zone of the ionosphere that normally covers the equator at night dipped toward the South Pole in a check mark shape, causing a temporary gap near the equator.

The Gannon storm also rocked Earth’s magnetosphere, the magnetic bubble surrounding the planet. Data from NASA missions MMS (Magnetospheric Multiscale) and THEMIS-ARTEMIS — short for Time History of Events and Macroscale Interactions-Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun — saw giant, curling waves of particles and rolled-up magnetic fields along the edge of the CMEs. These waves were perfectly sized to periodically dump extra magnetic energy and mass into the magnetosphere upon impact, creating the largest electrical current seen in the magnetosphere in 20 years.

Incoming energy and particles from the Sun also created two new temporary belts of energetic particles within the magnetosphere. Discovered by CIRBE, these belts formed between the Van Allen radiation belts that permanently surround Earth. The belt’s discovery is important to spacecraft and astronauts that can be imperiled by high-energy electrons and protons in the belts.

Illustration of Earth surrounded by colorful, concentric rings representing the Van Allen radiation belts, with white magnetic field lines arching around the planet against a black space background.
The Gannon storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. The discovery of the new belts is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
NASA/Goddard Space Flight Center/Kristen Perrin

Unusual Auroras

The storm also ignited auroras around the globe, including places where these celestial light shows are rare. NASA’s Aurorasaurus project was flooded with more than 6,000 observer reports from over 55 countries and all seven continents.

Photographers helped scientists understand why auroras observed throughout Japan were magenta rather than the typical red. Researchers studied hundreds of photos and found the auroras were surprisingly high — around 600 miles above the ground (200 miles higher than red auroras typically appear).

A torii gate stands by the shore with a small hill in the background, under a night sky filled with stars, a bright moon, and vivid purple and pink auroras.
In Japan, where it’s typical to see red auroras, numerous skywatchers captured photos of unusual magenta auroras instead. With the help of hundreds of photos like this one shared via social media, researchers found the magenta auroras were exceptionally high — around 600 miles above the ground (compared to a typical maximum height of 400 miles for red auroras, which are usually the highest).
KAGAYA

In a paper published in the journal Scientific Reports, the research team says the peculiar color likely resulted from a mix of red and blue auroras, produced by oxygen and nitrogen molecules lofted higher than usual as the Gannon storm heated and expanded the upper atmosphere.

“It typically needs some special circumstances, like we saw last May,” co-author Josh Pettit of NASA’s Goddard Space Flight Center said of Japan’s magenta auroras. “A very unique event indeed.”

Otherworldly Effects

Impacts of the Sun’s amped-up solar activity didn’t end at Earth. The solar active region that sparked the Gannon storm eventually rotated away from our planet and redirected its outbursts toward Mars.

As energetic particles from the Sun struck the Martian atmosphere, NASA’s MAVEN (Mars Atmosphere and Volatile Evolution) orbiter watched auroras engulf the Red Planet from May 14 to 20.

An animated gif of Mars, appearing in grayscale, with a pixellated pattern of purple and white lights shimmering on the left half of the planet, indicating auroras detected by NASA's MAVEN spacecraft.
The purple color in this animated GIF shows auroras across Mars’ nightside as detected by the Imaging Ultraviolet Spectrograph instrument aboard NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter. The brighter the purple, the more auroras were present. MAVEN took these images between May 14 and 20, 2024, as energetic particles from a solar storm were arriving at Mars. The sequence pauses at the end, when the most energetic particles arrived and overwhelmed the instrument with noise. MAVEN made the observations as it orbited below Mars, looking up at the nightside of the planet. (Mars’ south pole can be seen on the right, in full sunlight.)
NASA/University of Colorado/LASP

Solar particles overwhelmed the star camera on NASA’s 2001 Mars Odyssey orbiter (which uses stars to orient the spacecraft), causing the camera to cut out for almost an hour.

On the Martian surface, images from the navigation cameras on NASA’s Curiosity rover were freckled with “snow” — streaks and specks caused by charged particles. Meanwhile, Curiosity’s Radiation Assessment Detector recorded the biggest surge of radiation since the rover landed in 2012. If astronauts had been there, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays.

A black-and-white photo of a rocky Martian landscape, featuring a large sloped hill with visible layers on the right and a smaller peak in the distance under a hazy sky. Specks of white appear to dot the image from time to time, a response to solar energetic particles from the Sun hitting the camera.
The specks in this image sequence were caused by charged particles from the Sun hitting one of the navigation cameras aboard NASA’s Curiosity Mars rover on May 20, 2024. The sequence also shows the effects of a wind gust that happened to occur at the same time on the Martian surface.
NASA/JPL-Caltech

Still More to Come

The Gannon storm spread auroras to unusually low latitudes and has been called the best-documented geomagnetic storm in history. A year on, we have just begun unraveling its story. Data captured during this historic event will be analyzed for years to come, revealing new lessons about the nature of geomagnetic storms and how best to weather them.

By Mara Johnson-Groh, Miles Hatfield, and Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      Credit: NASA/Krystofer Kim Read this release in English here.
      La NASA estrenó el martes el primer episodio de la tercera temporada de Universo curioso de la NASA, el único pódcast en español de la agencia.
      Los episodios se centran en algunas de las principales misiones y temas de investigación de la NASA para 2025, llevando la maravilla de la exploración, la tecnología espacial y los descubrimientos científicos al público de habla hispana de todo el mundo.
      “La ciencia de la NASA está literalmente en todas partes, y trasciende la geografía y los idiomas para ofrecer beneficios, en tiempo real, en la vida cotidiana de las personas de todo el mundo que utilizan nuestras innovaciones, datos y descubrimientos científicos alcanzados desde el punto de vista único del espacio”, dijo la doctora Nicky Fox, administradora asociada de la Dirección de Misiones Científicas, en la sede central de la NASA en Washington. “El pódcast Universo curioso de la NASA comparte los descubrimientos de la NASA con las comunidades de habla hispana de todo el mundo, inspirando a futuros exploradores a unirse a nuestro viaje mientras regresamos a la Luna y nos aventuramos hacia Marte en beneficio de toda la humanidad”.
      Todos los meses se presentarán nuevos episodios hasta el final del año. El primer episodio, centrado en los objetivos científicos de la misión a la Luna Artemis II de la NASA, está disponible en:
      https://go.nasa.gov/4l9lmbN

      Universo curioso es presentado por Noelia González, especialista en comunicaciones en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. Esta temporada tendrá al coanfitrión Andrés Almeida, escritor técnico y anfitrión del pódcast de la NASA Small Steps, Giant Leaps (Pasos pequeños, grandes saltos) en la sede central de la NASA. A lo largo de la temporada, los oyentes celebrarán el legado del telescopio espacial Hubble de la NASA, aprenderán sobre una próxima misión al Sol y explorarán la energía oscura y cómo la estudiará el futuro telescopio espacial Roman, entre otros temas.
      Universo curioso de la NASA es una iniciativa conjunta de los programas de comunicaciones en español y audio de la agencia. La nueva temporada, así como los episodios anteriores, están disponibles en Apple Podcasts, Spotify, SoundCloud y el sitio web de la NASA.
      Escucha el pódcast y descarga materiales de arte relacionados en el sitio web:
      https://ciencia.nasa.gov/universocurioso
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA en español Podcasts View the full article
    • By NASA
      Credit: NASA/Krystofer Kim Lee esta nota en español aquí.
      NASA released the first episode Tuesday of its third season of Universo curioso de la NASA, the agency’s only Spanish-language podcast.
      Episodes focus on some of NASA’s top missions and research topics for 2025, bringing the wonder of exploration, space technology, and scientific discoveries to Spanish-speaking audiences around the world. 
      “NASA Science is literally everywhere, transcending geography and language to provide real time benefits to everyday lives across the globe using our scientific innovations, data, and discoveries from the unique vantage point of space,” said Dr. Nicky Fox, associate administrator, Science Mission Directorate, at NASA Headquarters in Washington. “The Universo curioso de la NASA podcast shares NASA’s discoveries with Spanish-speaking communities across the globe, inspiring future explorers to join our journey as we return to the Moon and venture onward to Mars for the benefit of all humanity.”


      New episodes will post every month through the end of the year. The first episode, centered on the science objectives of NASA’s Artemis II mission to the Moon, is available at:
      https://go.nasa.gov/4l9lmbN

      Universo curioso is hosted by Noelia González, communications specialist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This season introduces co-host Andrés Almeida, technical writer and host of NASA’s Small Steps, Giant Leaps podcast at NASA’s Headquarters. Throughout the season, listeners will celebrate the legacy of NASA’s Hubble Space Telescope, learn about an upcoming mission to the Sun, and explore dark energy and how the future Roman Space Telescope will study it, among other topics.

      Universo curioso de la NASA is a joint initiative of the agency’s Spanish-language communications and audio programs. The new season, as well as previous episodes, are available on Apple Podcasts, Spotify, SoundCloud and NASA’s website.

      Listen to the podcast and download related art materials at:
      https://ciencia.nasa.gov/universocurioso
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Podcasts General View the full article
    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...