Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: This image tells the story of redemption for one lonely star. The young star MP Mus (PDS 66) was thought to be all alone in the Universe, surrounded by nothing but a featureless band of gas and dust called a protoplanetary disc. In most cases, the material inside a protoplanetary disc condenses to form new planets around the star, leaving large gaps where the gas and dust used to be. These features are seen in almost every disc – but not in MP Mus’s.
      When astronomers first observed it with the Atacama Large Millimeter/submillimeter Array (ALMA), they saw a smooth, planet-free disc, shown here in the right image. The team, led by Álvaro Ribas, an astronomer at the University of Cambridge, UK, gave this star another chance and re-observed it with ALMA at longer wavelengths that peer even deeper into the protoplanetary disc than before. These new observations, shown in the left image, revealed a gap and a ring that had been obscured in previous observations, suggesting that MP Mus might have company after all.
      Meanwhile, another piece of the puzzle was being revealed in Germany as Miguel Vioque, an astronomer at the European Southern Observatory, studied this same star with the European Space Agency’s (ESA’s) Gaia mission. Vioque noticed something suspicious – the star was wobbling. A bit of gravitational detective work, together with insights from the new disc structures revealed by ALMA, showed that this motion could be explained by the presence of a gas giant exoplanet. 
      Both teams presented their joint results in a new paper published in Nature Astronomy. In what they describe as “a beautiful merging of two groups approaching the same object from different angles”, they show that MP Mus isn’t so boring after all.
      [Image description: This is an observation from the ALMA telescope, showing two versions (side-by-side) of a protoplanetary disc. Both discs are bright, glowing yellow-orange objects with a diffused halo against a dark background. The right disc is more smooth and blurry looking. The left disc shows more detail, for example gaps and rings within it.]
      Source: ESO
      View the full article
    • By Amazing Space
      Did Earth Just Have Its Fastest Day Ever?
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Video: 00:01:38 On 11 June, engineers at OHB’s facilities in Germany joined together the two main parts of ESA’s Plato mission. 
      They used a special crane to lift Plato’s payload module, housing its 26 ultra-sensitive cameras, into the air and carefully line it up over the service module. The supporting service module contains everything else that the spacecraft needs to function, including subsystems for power, propulsion and communication with Earth. 
      With millimetre-level precision, the engineers gently lowered the payload module into place. Once perfectly positioned, the team tested the electrical connections. 
      Finally, they securely closed a panel that connects the payload module to the service module both physically and electronically (seen ‘hanging’ horizontally above the service module in this image). This panel, which opens and closes with hinges, also contains the electronics to process data from the cameras. 
      Now in one piece, Plato is one step closer to beginning its hunt for Earth-like planets.  
      In the coming weeks, the spacecraft will undergo tests to ensure its cameras and data processing systems still work perfectly. 
      Then it will be driven from OHB’s cleanrooms to ESA’s technical heart (ESTEC) in the Netherlands. At ESTEC, engineers will complete the spacecraft by fitting it with a combined sunshield and solar panel module. 
      Following a series of essential tests to confirm that Plato is fit for launch and ready to work in space, it will be shipped to Europe’s launch site in French Guiana. 
      The mission is scheduled to launch on an Ariane 6 in December 2026. 
      Access the related broadcast quality video footage. 
      ESA’s Plato (PLAnetary Transits and Oscillations of stars) will use 26 cameras to study terrestrial exoplanets in orbits up to the habitable zone of Sun-like stars.  
      Plato's scientific instrumentation, consisting of the cameras and electronic units, is provided through a collaboration between ESA and the Plato Mission Consortium. This Consortium is composed of various European research centres, institutes and industries, led by the German Aerospace Center (DLR). The spacecraft is being built and assembled by the industrial Plato Core Team led by OHB together with Thales Alenia Space and Beyond Gravity. 
      View the full article
    • By Space Force
      Gen. Mike Guetlein, Vice Chief of Space Operations, visits Kirtland Air Force Base, signaling the base’s growing importance in space innovation, research and national defense.

      View the full article
  • Check out these Videos

×
×
  • Create New...