Members Can Post Anonymously On This Site
Michio Kaku: AI reveals Voyager’s mysterious image: Who or What is sending the data?
-
Similar Topics
-
By NASA
One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
“I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous
This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
“This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
Share
Details
Last Updated Sep 15, 2025 Related Terms
Earth Science Science Activation Explore More
13 min read The Earth Observer Editor’s Corner: July–September 2025
Article
5 days ago
21 min read Summary of the 11th ABoVE Science Team Meeting
Article
5 days ago
5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini
Article
3 weeks ago
View the full article
-
By NASA
Earth (ESD) Earth Explore Explore Earth Home Agriculture Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 5 Min Read NASA Data, Trainings Help Uruguay Navigate Drought
Uruguay’s Paso Severino Reservoir, the primary water source for Montevideo, on June 13, 2023, captured by Landsat 9. Credits:
NASA Earth Observatory/ Wanmei Liang Lee esta historia en español aquí.
NASA satellite data and trainings helped Uruguay create a drought-response tool that its National Water Authority now uses to monitor reservoirs and guide emergency decisions. A similar approach could be applied in the United States and other countries around the world.
From 2018 to 2023, Uruguay experienced its worst drought in nearly a century. The capital city of Montevideo, home to nearly 2 million people, was especially hard hit. By mid-2023, Paso Severino, the largest reservoir and primary water source for Montevideo, had dropped to just 1.7% of its capacity. As water levels declined, government leaders declared an emergency. They began identifying backup supplies and asked: Was there water left in other upstream reservoirs — mainly used for livestock and irrigation — that could help?
That’s when environmental engineer Tiago Pohren and his colleagues at the National Water Authority (DINAGUA – Ministry of Environment) turned to NASA data and trainings to build an online tool that could help answer that question and improve monitoring of the nation’s reservoirs.
“Satellite data can inform everything from irrigation scheduling in the Great Plains to water quality management in the Chesapeake Bay,” said Erin Urquhart, manager of the water resources program at NASA Headquarters in Washington. “NASA provides the reliable data needed to respond to water crises anywhere in the world.”
Learning to Detect Water from Space
The DINAGUA team learned about NASA resources during a 2022 workshop in Buenos Aires, organized by the Interagency Science and Applications Team (ISAT). Led by NASA, the U.S. Army Corps of Engineers, and the U.S. Department of State, the workshop focused on developing tools to help manage water in the La Plata River Basin, which spans multiple South American countries including Uruguay.
At the workshop, researchers from NASA introduced participants to methods for measuring water resources from space. NASA’s Applied Remote Sensing (ARSET) program also provided a primer on remote sensing principles.
DINAGUA team supervisor Jose Rodolfo Valles León asks a question during a 2022 workshop in Buenos Aires. Other members of the Uruguay delegation — Florencia Hastings, Vanessa Erasun Rodríguez de Líma, Vanessa Ferreira, and Teresa Sastre (current Director of DINAGUA) — sit in the row behind. Organization of American States “NASA doesn’t just deliver data,” said John Bolten, NASA’s lead scientist for ISAT and chief of the Hydrological Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We collaborate with our partners and local experts to translate the data into information that is useful, usable, and relevant. That kind of coordination is what makes NASA’s water programs so effective on the ground, at home and around the world.”
The DINAGUA team brought ideas and provided guidelines to Pohren for a tool that applies Landsat and Sentinel satellite imagery to detect changes in Uruguay’s reservoirs. Landsat, a joint NASA-U.S. Geological Survey mission, provides decades of satellite imagery to track changes in land and water. The Sentinel missions, a part of the European Commission managed Copernicus Earth Observation program and operated by ESA (the European Space Agency), provide complementary visible, infrared, and microwave imagery for surface water assessments.
From a young age, Pohren was familiar with water-related challenges, as floods repeatedly inundated his relatives’ homes in his hometown of Montenegro, Brazil. It was extra motivation for him as he scoured ARSET tutorials and taught himself to write computer code. The result was a monitoring tool capable of estimating the surface area of Uruguay’s reservoirs over time.
A screenshot of the reservoir monitoring tool shows the Paso Severino’s surface water coverage alongside time-series data tracking its variations. Tiago Pohren The tool draws on several techniques to differentiate the surface water extent of reservoirs. These techniques include three optical indicators derived from the Landsat 8 and Sentinel-2 satellites:
Normalized Difference Water Index, which highlights water by comparing how much green and near-infrared light is reflected. Water absorbs infrared light, so it stands out clearly from land. Modified Normalized Difference Water Index, which swaps near-infrared with shortwave infrared to improve the contrast and reduce errors when differentiating between water and built-up or vegetated areas. Automated Water Extraction Index, which combines four types of reflected light — green, near-infrared, and two shortwave infrared bands — to help separate water from shadows and other dark features. From Emergency Tool to Everyday Asset
In 2023, the DINAGUA team used Pohren’s tool to examine reservoirs located upstream from Montevideo’s drinking water intake. But the data told a tough story.
“There was water available in other reservoirs, but it was a very small amount compared to the water demand of the Montevideo metropolitan region,” Pohren said. Simulations showed that even if all of the water were released, most of it would not reach the water intake for Montevideo or the Paso Severino reservoir.
Despite this news, the analysis prevented actions that might have wasted important resources for maintaining productive activities in the upper basin, Pohren said. Then, in August 2023, rain began to refill Uruguay’s reservoirs, allowing the country to declare an end to the water crisis.
From right to left: Tiago Pohren, Vanessa Erasun, and Florencia Hastings at the second ISAT workshop in March 2024. Organization of American States Though the immediate water crisis has passed, the tool Pohren created will be useful in the future in Uruguay and around the world. During an ISAT workshop in 2024, he shared his tool with international water resources managers with the hope it could aid their own drought response efforts. And DINAGUA officials still use it to identify and monitor dams, irrigation reservoirs, and other water bodies in Uruguay.
Pohren continues to use NASA training and data to advance reservoir management. He’s currently exploring an ARSET training on how the Surface Water and Ocean Topography (SWOT) mission will further improve the system by allowing DINAGUA to directly measure the height of water in reservoirs. He is also following NASA’s new joint mission with ISRO (the Indian Space Research Organization) called NISAR, which launched on July 30. The NISAR satellite will provide radar data that detects changes in water extent, regardless of cloud cover or time of day. “If a drought happens again,” Pohren said, “with the tools that we have now, we will be much more prepared to understand what the conditions of the basin are and then make predictions.”
Environmental engineer Tiago Pohren conducts a field inspection on the Canelón Grande reservoir, the second-largest reservoir serving Montevideo, during the drought. Tiago Pohren By Melody Pederson, Rachel Jiang
The authors would like to thank Noelia Gonzalez, Perry Oddo, Denise Hill, and Delfina Iervolino for interview support as well as Jerry Weigel for connecting with Tiago about the tool’s development.
Share
Details
Last Updated Sep 10, 2025 Related Terms
Droughts Earth Life on Earth Natural Disasters Water on Earth Explore More
1 min read NASA’s Black Marble: Stories from the Night Sky
Studying the glowing patterns of Earth’s surface helps us understand human activity, respond to disasters,…
Article
1 month ago
4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Article
1 month ago
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
Article
2 months ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Earth Multimedia & Galleries
View the full article
-
By NASA
Advancing Single-Photon Sensing Image Sensors to Enable the Search for Life Beyond Earth
A NASA-sponsored team is advancing single-photon sensing Complementary Metal-Oxide-Semiconductor (CMOS) detector technology that will enable future NASA astrophysics space missions to search for life on other planets. As part of their detector maturation program, the team is characterizing sensors before, during, and after high-energy radiation exposure; developing novel readout modes to mitigate radiation-induced damage; and simulating a near-infrared CMOS pixel prototype capable of detecting individual photons.
Single-photon sensing and photon-number resolving CMOS image sensors: a 9.4 Mpixel sensor (left) and a 16.7 Mpixel sensor (right). Credit: CfD, RIT Are we alone in the universe? This age-old question has inspired scientific exploration for centuries. If life on other planets evolves similarly to life on Earth, it can imprint its presence in atmospheric spectral features known asbiosignatures. They include absorption and emission lines in the spectrum produced by oxygen, carbon dioxide, methane, and other molecules that could indicate conditions which can support life. A future NASA astrophysics mission, the Habitable Worlds Observatory (HWO), will seek to find biosignatures in the ultraviolet, optical, and near-infrared (NIR) spectra of exoplanet atmospheres to look for evidence that life may exist elsewhere in the universe.
HWO will need highly sensitive detector technology to detect these faint biosignatures on distant exoplanets. The Single-Photon Sensing Complementary Metal-Oxide-Semiconductor (SPSCMOS) image sensor is a promising technology for this application. These silicon-based sensors can detect and resolve individual optical-wavelength photons using a low-capacitance, high-gain floating diffusion sense node. They operate effectively over a broad temperature range, including at room temperature. They have near-zero read noise, are tolerant to radiation, and generate very little unwanted signal—such as dark current. When cooled to 250 K, the dark current drops to just one electron every half-hour. If either the read noise or dark current is too high, the sensor will fail to detect the faint signals that biosignatures produce.
A research team at the Rochester Institute of Technology (RIT) Center for Detectors (CfD) is accelerating the readiness of these SPSCMOS sensors for use in space missions through detector technology maturation programs funded by NASA’s Strategic Astrophysics Technology and Early Stage Innovations solicitations. These development programs include several key goals:
Characterize critical detector performance metrics like dark current, quantum efficiency, and read noise before, during, and after exposure to high-energy radiation Develop new readout modes for these sensors to mitigate effects from short-term and long-term radiation damage Design a new NIR version of the sensor using Technology Computer-Aided Design (TCAD) software SPSCMOS sensors operate similarly to traditional CMOS image sensors but are optimized to detect individual photons—an essential capability for ultra-sensitive space-based observations, such as measuring the gases in the atmospheres of exoplanets. Incoming photons enter the sensor and generate free charges (electrons) in the sensor material. These charges collect in a pixel’s storage well and eventually transfer to a low-capacitance component called the floating diffusion (FD) sense node where each free charge causes a large and resolved voltage shift. This voltage shift is then digitized to read the signal.
Experiments that measure sensor performance in a space relevant environment use a vacuum Dewar and a thermally-controlled mount to allow precise tuning of the sensors temperature. The Dewar enables testing at conditions that match the expected thermal environment of the HWO instrument, and can even cool the sensor and its on-chip circuits to temperatures colder than any prior testing reported for this detector family. These tests are critical for revealing performance limitations with respect to detector metrics like dark current, quantum efficiency, and read noise. As temperatures change, the electrical properties of on-chip circuits can also change, which affects the read out of charge in a pixel.
The two figures show results for SPSCMOS devices. The figure on the left shows a photon counting histogram with peaks that correspond to photon number. The figure on the right shows the dark current for a SPSCMOS device before and after exposure to 50 krad of 60 MeV protons. Credit: CfD, RIT The radiation-rich environment for HWO will cause temporary and permanent effects in the sensor. These effects can corrupt the signal measured in a pixel, interrupt sensor clocking and digital logic, and can cause cumulative damage that gradually degrades sensor performance. To mitigate the loss of detector sensitivity throughout a mission lifetime, the RIT team is developing new readout modes that are not available in commercial CMOS sensors. These custom modes sample the signal over time (a “ramp” acquisition) to enable the detection and removal of cosmic ray artifacts. In one mode, when the system identifies an artifact, it segments the signal ramp and selectively averages the segments to reconstruct the original signal—preserving scientific data that would otherwise be lost. In addition, a real-time data acquisition system monitors the detector’s power consumption, which may change from the accumulation of damage throughout a mission. The acquisition system records these shifts and communicates with the detector electronics to adjust voltages and maintain nominal operation. These radiation damage mitigation strategies will be evaluated during a number of test programs at ground-based radiation facilities. The tests will help identify unique failure mechanisms that impact SPSCMOS technology when it is exposed to radiation equivalent to the dose expected for HWO.
Custom acquisition electronics (left) that will control the sensors during radiation tests, and an image captured using this system (right). Credit: CfD, RIT While existing SPSCMOS sensors are limited to detecting visible light due to their silicon-based design, the RIT team is developing the world’s first NIR single-photon photodiode based on the architecture used in the optical sensors. The photodiode design starts as a simulation in TCAD software to model the optical and electrical properties of the low-capacitance CMOS architecture. The model simulates light-sensitive circuits using both silicon and Mercury Cadmium Telluride (HgCdTe or MCT) material to determine how well the pixel would measure photo-generated charge if a semiconductor foundry physically fabricated it. It has 2D and 3D device structures that convert light into electrical charge, and circuits to control charge transfer and signal readout with virtual probes that can measure current flow and electric potential. These simulations help to evaluate the key mechanisms like the conversion of light into electrons, storing and transferring the electrons, and the output voltage of the photodiode sampling circuit.
In addition to laboratory testing, the project includes performance evaluations at a ground-based telescope. These tests allow the sensor to observe astronomical targets that cannot be fully replicated in lab. Star fields and diffuse nebulae challenge the detector’s full signal chain under real sky backgrounds with faint flux levels, field-dependent aberrations, and varying seeing conditions. These observations help identify performance limitations that may not be apparent in controlled laboratory measurements.
In January 2025, a team of researchers led by PhD student Edwin Alexani used an SPSCMOS-based camera at the C.E.K. Mees Observatory in Ontario County, New York. They observed star cluster M36 to evaluate the sensor’s photometric precision, and the Bubble Nebula in a narrow-band H-alpha filter. The measured dark current and read noise were consistent with laboratory results.
The team observed photometric reference stars to estimate the quantum efficiency (QE) or the ability for the detector to convert photons into signal. The calculated QE agreed with laboratory measurements, despite differences in calibration methods.
The team also observed the satellite STARLINK-32727 as it passed through the telescope’s field of view and measured negligible persistent charge—residual signal that can remain in detector pixels after exposure to a bright source. Although the satellite briefly produced a bright streak across several pixels due to reflected sunlight, the average latent charge in affected pixels was only 0.03 e–/pix – well below both the sky-background and sensor’s read noise.
Images captured at the C.E.K. Mees Observatory. Left: The color image shows M36 in the Johnson color filters B (blue), V (green), and R (red) bands (left). Right: Edwin Alexani and the SPSCMOS camera (right). Credit: : CfD, RIT As NASA advances and matures the HWO mission, SPSCMOS technology promises to be a game-changer for exoplanet and general astrophysics research. These sensors will enhance our ability to detect and analyze distant worlds, bringing us one step closer to answering one of humanity’s most profound questions: are we alone?
For additional details, see the entry for this project on NASA TechPort.
Project Lead(s): Dr. Donald F. Figer, Future Photon Initiative and Center for Detectors, Rochester Institute of Technology (RIT), supported by engineer Justin Gallagher and a team of students.
Sponsoring Organization(s): NASA Astrophysics Division, Strategic Astrophysics Technology (SAT) Program and NASA Space Technology Mission Directorate (STMD), Early Stage Innovations (ESI) Program
Share
Details
Last Updated Sep 02, 2025 Related Terms
Astrophysics Science-enabling Technology Space Technology Mission Directorate Technology Highlights Explore More
2 min read Hubble Homes in on Galaxy’s Star Formation
Article
4 days ago
5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini
Article
1 week ago
5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Article
1 week ago
View the full article
-
By European Space Agency
Less than three weeks since the first MetOp Second Generation weather satellite, MetOp-SG-A1, was launched, this remarkable new satellite has already started transmitting data from two of its cutting-edge instruments, offering a tantalising glimpse of what’s to come.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Scientists believe giant impacts — like the one depicted in this artist’s concept — occurred on Mars 4.5 billion years ago, injecting debris from the impact deep into the planet’s mantle. NASA’s InSight lander detected this debris before the mission’s end in 2022.NASA/JPL-Caltech Rocky material that impacted Mars lies scattered in giant lumps throughout the planet’s mantle, offering clues about Mars’ interior and its ancient past.
What appear to be fragments from the aftermath of massive impacts on Mars that occurred 4.5 billion years ago have been detected deep below the planet’s surface. The discovery was made thanks to NASA’s now-retired InSight lander, which recorded the findings before the mission’s end in 2022. The ancient impacts released enough energy to melt continent-size swaths of the early crust and mantle into vast magma oceans, simultaneously injecting the impactor fragments and Martian debris deep into the planet’s interior.
There’s no way to tell exactly what struck Mars: The early solar system was filled with a range of different rocky objects that could have done so, including some so large they were effectively protoplanets. The remains of these impacts still exist in the form of lumps that are as large as 2.5 miles (4 kilometers) across and scattered throughout the Martian mantle. They offer a record preserved only on worlds like Mars, whose lack of tectonic plates has kept its interior from being churned up the way Earth’s is through a process known as convection.
A cutaway view of Mars in this artist’s concept (not to scale) reveals debris from ancient impacts scattered through the planet’s mantle. On the surface at left, a meteoroid impact sends seismic signals through the interior; at right is NASA’s InSight lander.NASA/JPL-Caltech The finding was reported Thursday, Aug. 28, in a study published by the journal Science.
“We’ve never seen the inside of a planet in such fine detail and clarity before,” said the paper’s lead author, Constantinos Charalambous of Imperial College London. “What we’re seeing is a mantle studded with ancient fragments. Their survival to this day tells us Mars’ mantle has evolved sluggishly over billions of years. On Earth, features like these may well have been largely erased.”
InSight, which was managed by NASA’s Jet Propulsion Laboratory in Southern California, placed the first seismometer on Mars’ surface in 2018. The extremely sensitive instrument recorded 1,319 marsquakes before the lander’s end of mission in 2022.
NASA’s InSight took this selfie in 2019 using a camera on its robotic arm. The lander also used its arm to deploy the mission’s seismometer, whose data was used in a 2025 study showing impacts left chunks of debris deep in the planet’s interior.NASA/JPL-Caltech Quakes produce seismic waves that change as they pass through different kinds of material, providing scientists a way to study the interior of a planetary body. To date, the InSight team has measured the size, depth, and composition of Mars’ crust, mantle, and core. This latest discovery regarding the mantle’s composition suggests how much is still waiting to be discovered within InSight’s data.
“We knew Mars was a time capsule bearing records of its early formation, but we didn’t anticipate just how clearly we’d be able to see with InSight,” said Tom Pike of Imperial College London, coauthor of the paper.
Quake hunting
Mars lacks the tectonic plates that produce the temblors many people in seismically active areas are familiar with. But there are two other types of quakes on Earth that also occur on Mars: those caused by rocks cracking under heat and pressure, and those caused by meteoroid impacts.
Of the two types, meteoroid impacts on Mars produce high-frequency seismic waves that travel from the crust deep into the planet’s mantle, according to a paper published earlier this year in Geophysical Research Letters. Located beneath the planet’s crust, the Martian mantle can be as much as 960 miles (1,550 kilometers) thick and is made of solid rock that can reach temperatures as high as 2,732 degrees Fahrenheit (1,500 degrees Celsius).
Scrambled signals
The new Science paper identifies eight marsquakes whose seismic waves contained strong, high-frequency energy that reached deep into the mantle, where their seismic waves were distinctly altered.
“When we first saw this in our quake data, we thought the slowdowns were happening in the Martian crust,” Pike said. “But then we noticed that the farther seismic waves travel through the mantle, the more these high-frequency signals were being delayed.”
Using planetwide computer simulations, the team saw that the slowing down and scrambling happened only when the signals passed through small, localized regions within the mantle. They also determined that these regions appear to be lumps of material with a different composition than the surrounding mantle.
With one riddle solved, the team focused on another: how those lumps got there.
Turning back the clock, they concluded that the lumps likely arrived as giant asteroids or other rocky material that struck Mars during the early solar system, generating those oceans of magma as they drove deep into the mantle, bringing with them fragments of crust and mantle.
Charalambous likens the pattern to shattered glass — a few large shards with many smaller fragments. The pattern is consistent with a large release of energy that scattered many fragments of material throughout the mantle. It also fits well with current thinking that in the early solar system, asteroids and other planetary bodies regularly bombarded the young planets.
On Earth, the crust and uppermost mantle is continuously recycled by plate tectonics pushing a plate’s edge into the hot interior, where, through convection, hotter, less-dense material rises and cooler, denser material sinks. Mars, by contrast, lacks tectonic plates, and its interior circulates far more sluggishly. The fact that such fine structures are still visible today, Charalambous said, “tells us Mars hasn’t undergone the vigorous churning that would have smoothed out these lumps.”
And in that way, Mars could point to what may be lurking beneath the surface of other rocky planets that lack plate tectonics, including Venus and Mercury.
More about InSight
JPL managed InSight for NASA’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-110
Share
Details
Last Updated Aug 28, 2025 Related Terms
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Explore More
4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability
Article 1 week ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
Article 1 week ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.