Jump to content

NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones


Recommended Posts

  • Publishers
Posted
KSC-20250503-PH-KLS01_0048~large.jpg?w=1
Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025.
NASA/Kim Shiflett

Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

“We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”

KSC-20250430-PH-ILW01_0096~large.jpg?w=1
Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.
NASA/Isaac Watson

On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.

jsc2025e040542.jpg?w=2048
NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II.
NASA/Josh Valcarcel

Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

jsc2025e016317.jpg?w=2048
NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.
NASA/Bill Stafford

Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left, NASA’s SpaceX Crew-10 members Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi share a light moment during a group portrait inside the International Space Station’s Kibo laboratory module.Credit: NASA NASA and SpaceX are targeting no earlier than 12:05 p.m. EDT, Thursday, Aug. 7, for the undocking of the agency’s SpaceX Crew-10 mission from the International Space Station. Pending weather conditions, splashdown is targeted at 11:58 a.m., Friday, Aug. 8. Crew-10 will be the first mission to splash down off the California coast for NASA’s Commercial Crew Program.
      NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov are completing a five-month science expedition aboard the orbiting laboratory and will return time-sensitive research to Earth.
      Mission managers continue monitoring weather conditions in the area, as undocking of the SpaceX Dragon depends on spacecraft readiness, recovery team readiness, weather, sea states, and other factors. NASA and SpaceX will select a specific splashdown time and location closer to the Crew-10 spacecraft undocking.
      NASA’s live coverage of return and related activities will stream on NASA+, Amazon Prime, and more. Learn how to stream NASA content through a variety of platforms.
      NASA’s coverage is as follows (all times Eastern and subject to changed based on real-time operations):
      Thursday, Aug. 7
      9:45 a.m. – Hatch closure coverage begins on NASA+ and Amazon Prime.
      10:20 a.m. – Hatch closing
      11:45 a.m. – Undocking coverage begins on NASA+ and Amazon Prime.
      12:05 p.m. – Undocking
      Following the conclusion of undocking coverage, NASA will distribute audio-only discussions between Crew-10, the space station, and flight controllers during Dragon’s transit away from the orbital complex.
      Friday, Aug. 8
      10:45 a.m. – Return coverage begins on NASA+ and Amazon Prime.
      11:08 a.m. – Deorbit burn
      11:58 a.m. – Splashdown
      1:30 p.m. – Return to Earth media teleconference will stream live on the agency’s YouTube channel, with the following participants:
      Steve Stich, manager, NASA’s Commercial Crew Program Dina Contella, deputy manager, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX Kazuyoshi Kawasaki, associate director general, Space Exploration Center/Space Exploration Innovation Hub Center, JAXA To participate in the teleconference, media must contact the NASA Johnson newsroom by 5 p.m., Aug. 7, at: jsccommu@mail.nasa.gov or 281-483-5111. To ask questions, media must dial in no later than 10 minutes before the start of the call. The agency’s media credentialing policy is available online.
      Find full mission coverage, NASA’s commercial crew blog, and more information about the Crew-10 mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Aug 06, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      Captured at a location called “Falbreen,” this enhanced-color mosaic features decep-tively blue skies and the 43rd rock abrasion (the white patch at center-left) of the NASA Perseverance rover’s mission at Mars. The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS In this natural-color version of the “Falbreen” panorama, colors have not been enhanced and the sky appears more reddish. Visible still is Perseverance’s 43rd rock abrasion (the white patch at center-left). The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS ‘Float rocks,’ sand ripples, and vast distances are among the sights to see in the latest high-resolution panorama by the six-wheeled scientist.
      The imaging team of NASA’s Perseverance Mars rover took advantage of clear skies on the Red Planet to capture one of the sharpest panoramas of its mission so far. Visible in the mosaic, which was stitched together from 96 images taken at a location the science team calls “Falbreen,” are a rock that appears to lie on top of a sand ripple, a boundary line between two geologic units, and hills as distant as 40 miles (65 kilometers) away. The enhanced-color version shows the Martian sky to be remarkably clear and deceptively blue, while in the natural-color version, it’s reddish.
      “Our bold push for human space exploration will send astronauts back to the Moon,” said Sean Duffy, acting NASA administrator. “Stunning vistas like that of Falbreen, captured by our Perseverance rover, are just a glimpse of what we’ll soon witness with our own eyes. NASA’s groundbreaking missions, starting with Artemis, will propel our unstoppable journey to take human space exploration to the Martian surface. NASA is continuing to get bolder and stronger.”
      The rover’s Mastcam-Z instrument captured the images on May 26, 2025, the 1,516th Martian day, or sol, of Perseverance’s mission, which began in February 2021 on the floor of Jezero Crater. Perseverance reached the top of the crater rim late last year.
      “The relatively dust-free skies provide a clear view of the surrounding terrain,” said Jim Bell, Mastcam-Z’s principal investigator at Arizona State University in Tempe. “And in this particular mosaic, we have enhanced the color contrast, which accentuates the differences in the terrain and sky.”
      Buoyant Boulder
      One detail that caught the science team’s attention is a large rock that appears to sit atop a dark, crescent-shaped sand ripple to the right of the mosaic’s center, about 14 feet (4.4 meters) from the rover. Geologists call this type of rock a “float rock” because it was more than likely formed someplace else and transported to its current location. Whether this one arrived by a landslide, water, or wind is unknown, but the science team suspects it got here before the sand ripple formed.
      The bright white circle just left of center and near the bottom of the image is an abrasion patch. This is the 43rd rock Perseverance has abraded since it landed on Mars. Two inches (5 centimeters) wide, the shallow patch is made with the rover’s drill and enables the science team to see what’s beneath the weathered, dusty surface of a rock before deciding to drill a core sample that would be stored in one of the mission’s titanium sample tubes.
      The rover made this abrasion on May 22 and performed proximity science (a detailed analysis of Martian rocks and soil) with its arm-mounted instruments two days later. The science team wanted to learn about Falbreen because it’s situated within what may be some of the oldest terrain Perseverance has ever explored — perhaps even older than Jezero Crater.
      Tracks from the rover’s journey to the location can be seen toward the mosaic’s right edge. About 300 feet (90 meters) away, they veer to the left, disappearing from sight at a previous geologic stop the science team calls “Kenmore.”
      A little more than halfway up the mosaic, sweeping from one edge to the other, is the transition from lighter-toned to darker-toned rocks. This is the boundary line, or contact, between two geologic units. The flat, lighter-colored rocks nearer to the rover are rich in the mineral olivine, while the darker rocks farther away are believed to be much older clay-bearing rocks.
      More About Perseverance
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover on behalf of NASA’s Science Mission Directorate in Washington, as part of NASA’s Mars Exploration Program portfolio. Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-100
      Explore More
      4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
      Article 10 minutes ago 5 min read NASA’s Lunar Trailblazer Moon Mission Ends
      Article 2 days ago 5 min read Marking 13 Years on Mars, NASA’s Curiosity Picks Up New Skills
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Astronaut Barry “Butch” WilmoreNASA/Aubrey Gemignani
      After 25 years at NASA, flying in four different spacecraft, accumulating 464 days in space, astronaut and test pilot Butch Wilmore has retired from NASA.
      The Tennessee native earned a bachelor’s and a master’s degree in electrical engineering from Tennessee Technological University and a master’s degree in aviation systems from the University of Tennessee.
      Wilmoreis a decorated U.S. Navy captain who has flown numerous tactical aircraft operationally while deploying aboard four aircraft carriers during peacetime and combat operations. A graduate of the U.S. Naval Test Pilot School, he went on to serve as a test pilot before NASA selected him to become an astronaut in 2000.
      “Butch’s commitment to NASA’s mission and dedication to human space exploration is truly exemplary,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “His lasting legacy of fortitude will continue to impact and inspire the Johnson workforce, future explorers, and the nation for generations. On behalf of NASA’s Johnson Space Center, we thank Butch for his service.”
      During his time at NASA, Wilmore completed three missions launching aboard the space shuttle Atlantis, Roscosmos Soyuz, and Boeing Starliner to the International Space Station. Wilmore also returned to Earth aboard a SpaceX Dragon spacecraft. Additionally, he conducted five spacewalks, totaling 32 hours outside the orbital laboratory.  
      “Throughout his career, Butch has exemplified the technical excellence of what is required of an astronaut. His mastery of complex systems, coupled with his adaptability and steadfast commitment to NASA’s mission, has inspired us all,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “As he steps into this new chapter, that same dedication will no doubt continue to show in whatever he decides to do next.”
      Most recently, Wilmore launched aboard Boeing’s Starliner spacecraft on June 5, 2024, for its first crewed flight test mission, arriving at the space station the following day. While aboard the station, Wilmore completed numerous tasks, including a spacewalk to help remove a radio frequency group antenna assembly from the station’s truss and collected samples and surface material for analysis from the Destiny laboratory and the Quest airlock.
      “From my earliest days, I have been captivated by the marvels of creation, looking upward with an insatiable curiosity. This curiosity propelled me into the skies, and eventually to space, where the magnificence of the cosmos mirrored the glory of its creator in ways words can scarcely convey,” said Wilmore. “Even as I ventured beyond Earth’s limits, I remained attuned to the beauty and significance of the world below, recognizing the same intricate design evident among the stars is also woven into the fabric of life at home.”
      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      Courtney Beasley
      Johnson Space Center, Houston
      281-910-4989
      courtney.m.beasley@nasa.gov

      View the full article
    • By NASA
      This view of tracks trailing NASA’s Curiosity rover was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter.NASA/JPL-Caltech NASA’s Curiosity rover captured a view of its tracks on July 26, 2025. The robotic scientist is now exploring a region of lower Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain. The pale peak of the mountain can be seen at top right; the rim of Gale Crater, within which the mountain sits, is on the horizon at top left. Curiosity touched down on the crater floor 13 years ago.
      Recently, the rover rolled into a region filled with boxwork formations. Studying these formations could reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out. Read more about the detective work Curiosity is doing on Mars.
      Image credit: NASA/JPL-Caltech

      View the full article
    • By NASA
      Nathan Jermyn frequented NASA Stennis on field trips when he was younger. Now, he works as an attorney-advisor supporting NASA Stennis and the NASA Shared Services Center. NASA/Danny Nowlin Before Nathan Jermyn could dig into the legal frameworks at NASA, he had to answer a different call.
      Jermyn participated in a one-day orientation in the summer of 2023 to begin work as an attorney-advisor supporting NASA’s Stennis Space Center and the NASA Shared Services Center near Bay St. Louis, Mississippi.
      However, the Biloxi, Mississippi, native shipped out just a week later with the Mississippi Army National Guard to provide military legal counsel for nearly six months in support of Operation Spartan Shield and Operation Inherent Resolve.
      The decorated military veteran returned to NASA in January 2024 to fully immerse himself as a member of the contract and procurement practice group for the NASA Office of the General Counsel.
      “Even though I have been working here for two years, sometimes it does not feel real,” Jermyn said.
      As a member of the contract and procurement law team, Jermyn assists with contract- and procurement-related topics for NASA Stennis and the NASA Shared Services Center to ensure taxpayer funds are used responsibly.
      He also is a member of NASA’s Freedom of Information Act (FOIA) team and provides legal reviews and advice for FOIA requests as the agency creates a cohesive and effective knowledge-sharing environment.
      The most interesting thing about his work is seeing how the big picture comes together, how each small detail and decision adds up to something more meaningful.  
      “Our office is a small piece, and it is amazing to see how our efforts intertwine with NASA Stennis and the NASA Shared Services Center operations and NASA,” he said. “It is also amazing the lengths everyone will go to help each other accomplish the mission.”
      Before joining NASA, Jermyn graduated from The University of Southern Mississippi with a bachelor’s degree in business administration and a law degree from Mississippi College School of Law.
      The Gulfport, Mississippi, resident initially practiced criminal law. Jermyn credits the team he works with at NASA for helping him navigate the complexities of government contract law.
      “Having a team that supports you and teaches you every day really expedites the learning process,” he said. “Our team puts a heavy emphasis on learning, development, and teamwork.”
      Jermyn is most excited to see how NASA continues to explore the universe moving forward, which includes the Artemis campaign of exploring the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars. Artemis II is scheduled for 2026.
      “I wholeheartedly believe humanity is destined for the stars and NASA is in prime position to lead that charge,” he said.
      Learn More About Careers at NASA Stennis Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
  • Check out these Videos

×
×
  • Create New...