Jump to content

Recommended Posts

  • Publishers
Posted

A first-generation college graduate, Nilufar Ramji was blazing trails long before arriving at NASA. With her multifaceted expertise, she is helping shape the messaging behind humanity’s return to the Moon, Mars, and beyond. 

Ramji is currently on detail as the co-executive producer for NASA’s live broadcasts, ensuring the agency’s missions and discoveries are clearly and effectively communicated to the public. Through her work, she expands understanding of what space exploration means for all—and why it matters. 

A portrait of a woman dressed in a white blazer and shirt. She is in front of the U.S. flag (left) and NASA flag (right).
Official portrait of Nilufar Ramji.
NASA/Josh Valcarcel

Before stepping into her acting role, Ramji served as the lead public affairs officer for Moon to Mars activities at NASA’s Johnson Space Center in Houston. She spearheaded communication strategies for the Commercial Lunar Payload Services initiative, which works with private companies to deliver science and technology payloads to the lunar surface. She has also provided live commentary for International Space Station operations to learn and prepare for Artemis missions.  

Ramji played a pivotal role in communicating NASA’s involvement in two major lunar missions in 2025 including Firefly Aerospace’s Blue Ghost Mission 1 which successfully delivered 10 NASA payloads to the Moon’s Mare Crisium on March 2. Ramji served as the live mission commentator, helping audiences around the world follow the historic moment—from lunar orbit insertion to touchdown. She also led communications for Intuitive Machines’ IM-2 mission, which landed near the Moon’s South Pole on March 6, marking the southernmost lunar landing ever achieved. 

Two women with headsets on converse during a live broadcast.
Nilufar Ramji, left, and Brigette Oakes, vice president of engineering at Firefly Aerospace, in the company’s mission operations center in Cedar Park, Texas, during the Blue Ghost Mission 1 lunar landing.
NASA/Helen Arase Vargas

Early in her NASA career, she led agencywide STEM communications, shaping how NASA connects with students and educators. As a lead strategist, she developed messaging that made science and technology more accessible to younger audiences—helping inspire the Artemis Generation. 

“Being one of the storytellers behind humanity’s return to the Moon is something I take pride in,” she said. “People don’t realize what exploring our solar system has done for us here on Earth. Going to the Moon and onto Mars will bring that message home.” 

microsoftteams-image-54-2.jpg?w=2048
Nilufar Ramji, left, and Aliyah Craddock, digital media lead for NASA Science in the Science Mission Directorate, in the Astromaterials Research and Exploration Science laboratory at NASA’s Johnson Space Center in Houston.
NASA

Ramji communicates not just the science of space, but its greater significance. “How can we be thoughtful in our communications?” is a question that drives her approach. Whether guiding a live broadcast or developing messaging about lunar science, she is constantly evaluating, executing, and refining NASA’s voice. 

She also understands the importance of commercial partnerships in expanding human presence in space. “It’s exciting to see how many different people and organizations come together to make this a reality,” she said. “By creating a larger space economy, we’re able to do things faster and cheaper and still accomplish the same goals to make sure we’re all successful.” 

nramji-tedx.jpg?w=2048
Nilufar Ramji presents a TedX Talk, “Storytelling from Space” in Sugar Land, Texas.

In Aug. 2023, Ramji delivered a TEDx Talk, “Storytelling from Space” in Sugar Land, Texas, where she emphasized the power of narrative to inspire and unite humanity in the quest to explore the universe. Drawing from her NASA experience, she illustrated how communication bridges the gap between complex science and public engagement. 

She credits her mentors and colleagues for supporting her growth. “I have great mentors and people I can lean on if I need help,” she said. “It’s something I didn’t realize I had until I came to NASA.” 

Ramji believes stepping outside your comfort zone is essential. “Discomfort brings new learning, understanding, and opportunities, so I like being uncomfortable at times,” she said. “I’m open and receptive to feedback. Constructive criticism has helped me grow and evolve—and better understand NASA’s mission.” 

For her, balance means creating intentional space for reflection, growth, and meaningful connection. 

A woman dressed in a light brown suit smiles and stands at a podium during an event.
Nilufar Ramji gives remarks during Johnson’s building naming ceremony of the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024.
NASA/Robert Markowitz 

Before joining NASA, Ramji had already built an international career rooted in service. She worked at the Aga Khan Foundation in Canada, a nonprofit organization focused on addressing challenges in underdeveloped communities through education and healthcare. 

She led visitor programs, workshops and more than 250 events—often for diplomats and global leaders—to promote “quiet diplomacy” and dialogue. 

“Transparency, quality, fairness and diversity of perspective are all important to me,” she said. “People come from different experiences that broaden our understanding.” 

Ramji later moved to East Africa as the foundation’s sole communications representative across Kenya, Tanzania, and Uganda. There, she trained more than 300 staff and built a communications strategy to help local teams share stories of impact—both successes and challenges—with honesty and empathy. 

Her work left a lasting mark on the communities she served and underscored the power of communication to drive positive change. 

A woman sits outside dressed in a white t-shirt and takes notes on her lap. To her right is a man watchi
Nilufar Ramji captures the story of a sesame farmer in Mtwara, Tanzania, whose livelihood improved through a rural development program initiated by the Aga Khan Foundation.

In 2013, Ramji moved to the United States and started over, rebuilding her network and career. She worked for the Aga Khan Council for USA in Houston, leading a volunteer recruitment program that connected thousands of people with roles suited to their skills. 

She later applied for a contractor position—not knowing it was with NASA. “I never thought my skills or expertise would be valued at a place like NASA,” she said. But in 2018, she accepted a role as a public relations specialist supporting International Space Station outreach. She has been shaping the agency’s storytelling ever since.  

Ramji’s journey represents NASA’s commitment to pushing boundaries and expanding humanity’s knowledge of the universe. With collaboration, transparency, and vision, she is helping bring the next frontier of space exploration to life. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employee Naomi Torres sits inside the air taxi passenger ride quality simulator at NASA’s Armstrong Flight Research Center in Edwards, California, as the simulator moves during a study on Oct. 23, 2024. Research continues to better understand how humans may interact with these new types of aircraft.NASA/Steve Freeman NASA’s Advanced Air Mobility vision involves the skies above the U.S. filled with new types of aircraft, including air taxis. But making that vision a reality involves ensuring that people will actually want to ride these aircraft – which is why NASA has been working to evaluate comfort, to see what passengers will and won’t tolerate. 
      NASA is conducting a series of studies to understand how air taxi motion, vibration, and other factors affect ride comfort. The agency will provide the data it gathers to industry and others to guide the design and operational practices for future air taxis. 
      “The results of this study can guide air taxi companies to design aircraft that take off, land, and respond to winds and gusts in a way that is comfortable for the passengers,” said Curt Hanson, senior flight controls researcher for this project based at NASA’s Armstrong Flight Research Center in Edwards, California. “Passengers who enjoy their experience in an air taxi are more likely to become repeat riders, which will help the industry grow.” 
      The air taxi comfort research team uses NASA Armstrong’s Ride Quality Laboratory as well as the Human Vibration Lab and Vertical Motion Simulator at NASA’s Ames Research Center in California’s Silicon Valley to study passenger response to ride quality, as well as how easily and precisely a pilot can control and maneuver aircraft. 
      After pilots checked out the simulator setup, the research team conducted a study in October where NASA employees volunteered to participate as passengers to experience the virtual air taxi flights and then describe their comfort level to the researchers.  
      Curt Hanson, senior flight controls researcher for the Revolutionary Vertical Lift Technology project based at NASA’s Armstrong Flight Research Center in Edwards, California, explains the study about to begin to NASA employee and test subject Naomi Torres on Oct. 23, 2024. Behind them is the air taxi passenger ride quality simulator in NASA Armstrong’s Ride Quality Laboratory. Studies continue to better understand passenger comfort for future air taxi rides.NASA/Steve Freeman Using this testing, the team produced an initial study that found a relationship between levels of sudden vertical motion and passenger discomfort. More data collection is needed to understand the combined effect of motion, vibration, and other factors on passenger comfort. 
      “In the Vertical Motion Simulator, we can investigate how technology and aircraft design choices affect the handling qualities of the aircraft, generate data as pilots maneuver the air taxi models under realistic conditions, and then use this to further investigate passenger comfort in the Ride Quality and Human Vibration Labs,” said Carlos Malpica, senior rotorcraft flight dynamics researcher for this effort based at NASA Ames. 
      This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones. 
      Share
      Details
      Last Updated Jun 20, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Ames Research Center Drones & You Revolutionary Vertical Lift Technology Explore More
      2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 4 hours ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 2 days ago 4 min read NASA Tech to Measure Heat, Strain in Hypersonic Flight
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      X-FLARE Update - Did You See This Giant Solar Flare Today? 13th May - AR4086 Flare and CME
    • By NASA
      6 min read
      NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      This North Atlantic right whale, named “Bowtie,” was spotted feeding in southern Maine waters in January 2025. A new technique aims to use NASA satellite data to see the plankton these whales depend on from space. Credit: New England Aquarium, taken under NMFS permit # 25739 In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape. The North Atlantic right whale filters clouds of tiny reddish zooplankton — called Calanus finmarchicus — from the sea. These zooplankton, no bigger than grains of rice, are the whale’s lifeline. Only about 370 of these massive creatures remain.
      For decades, tracking the tiny plankton meant sending research vessels out in the ocean, towing nets and counting samples by hand. Now, scientists are looking from above instead.
      Using NASA satellite data, researchers found a way to detect Calanus swarms at the ocean surface in the Gulf of Maine, picking up on the animals’ natural red pigment. This early-stage approach, described in a new study, may help researchers better estimate where the copepods gather, and where whales might follow.
      Tracking the zooplankton from space could aid both the whales and maritime industries. By predicting where these mammals are likely to feed, researchers and marine resource managers hope to reduce deadly vessel strikes and fishing gear entanglements — two major threats to the species. Knowing the feeding patterns could also help shipping and fishing industries operate more efficiently.
      Calanus finmarchicus, a tiny zooplankton powering North Atlantic food webs, fuels right whale populations with its energy-rich lipid reserves. Credit: Cameron Thompson “NASA invests in this kind of research because it connects space-based observation with real-world challenges,” said Cynthia Hall, a support scientist at NASA headquarters in Washington. She works with the Early Career Research Program, which partly funded the work. “It’s yet another a way to put NASA satellite data to work for science, communities, and ecosystems.”
      Revealing the Ocean’s Hidden Patterns
      The new approach uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite. The MODIS instrument doesn’t directly see the copepods themselves. Instead, it reads how the spectrum of sunlight reflected from the ocean surface changes in response to what’s in the water.
      When large numbers of the zooplankton rise to the surface, their reddish pigment — astaxanthin, the same compound that gives salmon its pink color — subtly alters how photons, or particles of light, from the sun are absorbed or scattered in the water. The fate of these photons in the ocean depends on the mix of living and non-living matter in seawater, creating a slight shift in color that MODIS can detect.
      “We didn’t know to look for Calanus before in this way,” said Catherine Mitchell, a satellite oceanographer at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. “Remote sensing has typically focused on smaller things like phytoplankton. But recent research suggested that larger, millimeter-sized organisms like zooplankton can also influence ocean color.”
      A few years ago, researchers piloted a satellite method for detecting copepods in Norwegian waters. Now, some of those same scientists — along with Mitchell’s team — have refined the approach and applied it to the Gulf of Maine, a crucial feeding ground for right whales during their northern migration. By combining satellite data, a model, and field measurements, they produced enhanced images that revealed Calanus swarms at the sea surface, and were able to estimate numbers of the tiny animals.
      “We know the right whales are using habitats we don’t fully understand,” said Rebekah Shunmugapandi, also a satellite oceanographer at Bigelow and the study’s lead author. “This satellite-based Calanus information could eventually help identify unknown feeding grounds or better anticipate where whales might travel.”
      Tracking Elusive Giants
      Despite decades of study, North Atlantic right whales remain remarkably enigmatic to scientists. Once fairly predictable in their movements along the Eastern Seaboard of North America, these massive mammals began abandoning some traditional feeding grounds in 2010-2011. Their sudden shift to unexpected areas like the Gulf of Saint Lawrence caught people off guard, with deadly consequences.
      “We’ve had whales getting hit by ships and whales getting stuck in fishing gear,” said Laura Ganley, a research scientist in the Anderson Cabot Center for Ocean Life at the New England Aquarium in Boston, which conducts aerial and boat surveys of the whales.  
      In 2017, the National Oceanic and Atmospheric Administration designated the situation as an “unusual mortality event” in an effort to address the whales’ decline. Since then, 80 North Atlantic right whales have been killed or sustained serious injuries, according to NOAA.
      NASA satellite imagery from June 2009 was used to test a new method for detecting the copepod Calanus finmarchicus in the Gulf of Maine and estimating their numbers from space. Credit: NASA Earth Observatory image by Wanmei Liang, using data from Shunmugapandi, R., et al. (2025) In the Gulf of Maine, there’s less shipping activity, but there can be a complex patchwork of lobster fishing gear, said Sarah Leiter, a scientist with the Maine Department of Marine Resources. “Each fisherman has 800 traps or so,” Leiter explained. “If a larger number of whales shows up suddenly, like they just did in January 2025, it is challenging. Fishermen need time and good weather to adjust that gear.”
      What excites Leiter the most about the satellite data is the potential to use it in a forecasting tool to help predict where the whales could go. “That would be incredibly useful in giving us that crucial lead time,” she said.
      PACE: The Next Generation of Ocean Observer
      For now, the Calanus-tracking method has limitations. Because MODIS detects the copepods’ red pigment, not the animals themselves, that means other small, reddish organisms can be mistaken for the zooplankton. And cloud cover, rough seas, or deeper swarms all limit what satellites can spot.
      MODIS is also nearing the end of its operational life. But NASA’s next-generation PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite — launched in 2024 — is poised to make dramatic improvements in the detection of zooplankton and phytoplankton.
      NASA’s Ocean Color Instrument on the PACE satellite captured these swirling green phytoplankton blooms in the Gulf of Maine in April 2024. Such blooms fuel zooplankton like Calanus finmarchicus. Credit: NASA “The PACE satellite will definitely be able to do this, and maybe even something better,” said Bridget Seegers, an oceanographer and mission scientist with the PACE team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The PACE mission includes the Ocean Color Instrument, which detects more than 280 wavelengths of light. That’s a big jump from the 10 wavelengths seen by MODIS. More wavelengths mean finer detail and better insights into ocean color and the type of plankton that the satellite can spot.
      Local knowledge of seasonal plankton patterns will still be essential to interpret the data correctly. But the goal isn’t perfect detection, the scientists say, but rather to provide another tool to inform decision-making, especially when time or resources are limited.
      By Emily DeMarco
      NASA Headquarters
      Share








      Details
      Last Updated May 05, 2025 Editor Emily DeMarco Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      As part of a science mission tracking one of Earth’s most precious resources – water…


      Article


      2 weeks ago
      5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes,…


      Article


      2 weeks ago
      3 min read Celebrating Earth as Only NASA Can
      Lee esta historia en español aquí. From the iconic image of Earthrise taken by Apollo 8…


      Article


      2 weeks ago
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Multinational corporations are using the M2M Intelligence platform in data centers and other settings. The system offers automated, secure communications on a ground-based global 5G network. Getty Images Artificial intelligence (AI) is advancing rapidly, as intelligent software proves capable of various tasks. The technology usually requires a “human in the loop” to train it and ensure accuracy. But long before the arrival of today’s generative artificial intelligence, a different kind of AI was born with the help of NASA’s Ames Research Center in California’s Silicon Valley — one that only exists between machines, running without any human intervention.

      In 2006, Geoffrey Barnard founded Machine-to-Machine Intelligence Corp. (M2Mi) at Ames’ NASA Research Park, envisioning an automated, satellite-based communication network. NASA Ames established a Space Act Agreement with the company to develop artificial intelligence that would automate communications, privacy, security, and resiliency between satellites and ground-based computers.

      Central to the technology was automating a problem-solving approach known as root cause analysis, which NASA has honed over decades. This methodology seeks to identify not only the immediate cause of a problem but also all the factors that contributed to the cause. This would allow a network to identify its own issues and fix itself. 

      NASA Ames’ director of nanotechnology at the time wanted to develop a communications network based on small, low-powered satellites, so Ames supported M2Mi in developing the necessary technology. 
      Barnard, now CEO and chief technology officer of Tiburon, California-based branch of M2Mi, said NASA’s support laid the foundation for his company, which employs the same technology in a ground-based network. 
      The company’s M2M Intelligence software performs secure, resilient, automated communications on a system that runs across hundreds of networks, connecting thousands of devices, many of which were not built to communicate with each other. The M2Mi company worked with Vodafone of Berkshire, England, to build a worldwide network across more than 500 smaller networks in over 190 countries. The companies M2M Wireless and TriGlobal have begun using M2M Intelligence for transportation logistics. 
      With NASA’s help, emerging industries are getting the boost they need to rapidly develop technologies to enhance our lives. 
      Read More Share
      Details
      Last Updated Apr 29, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Engineering Sparks Innovative New Battery 
      Nickel-hydrogen technology is safe, durable, and long-lasting – now it’s affordable too.
      Article 5 days ago 2 min read NASA Tech Developed for Home Health Monitoring  
      Article 3 weeks ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Artificial Intelligence for Science
      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.
      Ames Research Center
      Solar System
      View the full article
    • By European Space Agency
      The European Space Agency's XMM-Newton is playing a crucial role in investigating the longest and most energetic bursts of X-rays seen from a newly awakened black hole. Watching this strange behaviour unfold in real time offers a unique opportunity to learn more about these powerful events and the mysterious behaviour of massive black holes.
      View the full article
  • Check out these Videos

×
×
  • Create New...