Members Can Post Anonymously On This Site
NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
-
Similar Topics
-
By NASA
NASA Langley highlights its Cirrus Design SR22 during Air Power Over Hampton Roads STEM Day. NASA/Angelique Herring NASA Langley Research Center’s integral role in the past, present, and future of flight was on full display April 25-27 during the Air Power Over Hampton Roads air show.
The air show, held at Joint Base Langley-Eustis (JBLE), which neighbors NASA Langley in Hampton, Virginia, attracted thousands of spectators throughout the weekend.
The weekend kicked off with a STEM Day on April 25. Langley’s Office of STEM Engagement (OSTEM) offered educational and engaging activities, exhibits, and displays to share NASA missions and encourage K-12 students from local schools to explore the possibilities that science, technology, engineering, and math offer.
“Participation in the air show allows us to share NASA’s work in aeronautics with the public and provides an opportunity for Langley researchers and engineers to work directly with students and families to share the exciting work they do,” said Bonnie Murray, Langley OSTEM Student Services manager.
NASA Langley personnel inspire young minds during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring Langley OSTEM’s participation continued throughout the weekend as a part of the air show’s STEM Expo, where visitors to the NASA booths tested a paper helicopter in a small-scale wind tunnel to explore flight dynamics, learned how NASA uses X-planes for research and designed their own X-plane, and tested experimental paper airplanes of various designs. By observing flight of the plane designs and making improvements to each one, students participated in the engineering design process. NASA subject matter experts in attendance guided students through these activities, inspired young minds by sharing some of their innovations, and promoted a variety of STEM career paths.
“Through engagement in the NASA STEM Zone activities, students had an opportunity to see themselves in the role of a NASA researcher,” Murray said. “Authentic learning experiences such as these help build children’s STEM identity, increasing the likelihood of them pursuing STEM careers in the future.”
A child enjoys NASA STEM activities during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring The air show’s static aircraft displays included NASA Langley’s Cirrus Design SR22, a research aircraft used to support NASA’s airborne science program, the science community, and aeronautics research.
“Reflective of our strong, long-standing partnership with JBLE, NASA Langley was proud to participate in this year’s Air Power Over Hampton Roads air show,” said Glenn Jamison, director of Langley’s Research Services Directorate. “Our relationship spans back to 1917 when NACA and Langley Field evolved together over formative years in aerodynamic research, sharing the airspace and facilities here in Hampton. Today, we continue our collaboration with JBLE in pursuing shared interests and finding innovative solutions to complex problems.”
The displays also featured several small Unmanned Aircraft Systems (sUAS) and NASA’s P-3 Orion, a research aircraft based at NASA’s Wallops Flight Facility on Wallops Island, Virginia.
Air show visitors could explore a picture display that highlighted NASA Langley’s rich aviation legacy, from its founding in 1917 to Langley’s work today to accelerate advancements in aeronautics, science, and space technology and exploration. Spacey Casey, a crowd favorite, greeted and took pictures with educators, students, and guests throughout the weekend, bringing out-of-this-world smiles to their faces. Members of Langley’s Office of the Director also represented the center at the event.
Brittny McGraw
NASA Langley Research Center
View the full article
-
By European Space Agency
ESA Director General Josef Aschbacher emphasises the importance of cooperation in space activities
View the full article
-
By NASA
Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
“This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
“Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
“We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Lifts Veil on Common but Mysterious Type of Exoplanet
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Credits:
Illustration: NASA, ESA, CSA, Dani Player (STScI) Though they don’t orbit around our Sun, sub-Neptunes are the most common type of exoplanet, or planet outside our solar system, that have been observed in our galaxy. These small, gassy planets are shrouded in mystery…and often, a lot of haze. Now, by observing exoplanet TOI-421 b, NASA’s James Webb Space Telescope is helping scientists understand sub-Neptunes in a way that was not possible prior to the telescope’s launch.
“I had been waiting my entire career for Webb so that we could meaningfully characterize the atmospheres of these smaller planets,” said principal investigator Eliza Kempton of the University of Maryland, College Park. “By studying their atmospheres, we’re getting a better understanding of how sub-Neptunes formed and evolved, and part of that is understanding why they don’t exist in our solar system.”
Image A: Artist’s Concept of TOI-421 b
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Illustration: NASA, ESA, CSA, Dani Player (STScI) Small, Cool, Shrouded in Haze
The existence of sub-Neptunes was unexpected before they were discovered by NASA’s retired Kepler space telescope in the last decade. Now, astronomers are trying to understand where these planets came from and why are they so common.
Before Webb, scientists had very little information on them. While sub-Neptunes are a few times larger than Earth, they are still much smaller than gas-giant planets and typically cooler than hot Jupiters, making them much more challenging to observe than their gas-giant counterparts.
A key finding prior to Webb was that most sub-Neptune atmospheres had flat or featureless transmission spectra. This means that when scientists observed the spectrum of the planet as it passed in front of its host star, instead of seeing spectral features – the chemical fingerprints that would reveal the composition of the atmosphere – they saw only a flat-line spectrum. Astronomers concluded from all of those flat-line spectra that at least certain sub-Neptunes were probably very highly obscured by either clouds or hazes.
Image B: Spectrum of TOI-421 b
A transmission spectrum captured by NASA’s James Webb Space Telescope reveals chemicals in the atmosphere of the hot sub-Neptune exoplanet TOI-421 b. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A Different Kind of Sub-Neptune?
“Why did we observe this planet, TOI-421 b? It’s because we thought that maybe it wouldn’t have hazes,” said Kempton. “And the reason is that there were some previous data that implied that maybe planets over a certain temperature range were less enshrouded by haze or clouds than others.”
That temperature threshold is about 1,070 degrees Fahrenheit. Below that, scientists hypothesized that a complex set of photochemical reactions would occur between sunlight and methane gas, and that would trigger the haze. But hotter planets shouldn’t have methane and therefore perhaps shouldn’t have haze.
The temperature of TOI-421 b is about 1,340 degrees Fahrenheit, well above the presumed threshold. Without haze or clouds, researchers expected to see a clear atmosphere – and they did!
A Surprising Finding
“We saw spectral features that we attribute to various gases, and that allowed us to determine the composition of the atmosphere,” said the University of Maryland’s Brian Davenport, a third-year Ph.D. student who conducted the primary data analysis. “Whereas with many of the other sub-Neptunes that had been previously observed, we know their atmospheres are made of something, but they’re being blocked by haze.”
The team found water vapor in the planet’s atmosphere, as well as tentative signatures of carbon monoxide and sulfur dioxide. Then there are molecules they didn’t detect, such as methane and carbon dioxide. From the data, they can also infer that a large amount of hydrogen is in TOI-421 b’s atmosphere.
The lightweight hydrogen atmosphere was the big surprise to the researchers. “We had recently wrapped our mind around the idea that those first few sub-Neptunes observed by Webb had heavy-molecule atmospheres, so that had become our expectation, and then we found the opposite,” said Kempton. This suggests TOI-421 b may have formed and evolved differently from the cooler sub-Neptunes observed previously.
Is TOI-421 b Unique?
The hydrogen-dominated atmosphere is also interesting because it mimics the composition of TOI-421 b’s host star. “If you just took the same gas that made the host star, plopped it on top of a planet’s atmosphere, and put it at the much cooler temperature of this planet, you would get the same combination of gases. That process is more in line with the giant planets in our solar system, and it is different from other sub-Neptunes that have been observed with Webb so far,” said Kempton.
Aside from being hotter than other sub-Neptunes previously observed with Webb, TOI-421 b orbits a Sun-like star. Most of the other sub-Neptunes that have been observed so far orbit smaller, cooler stars called red dwarfs.
Is TOI-421b emblematic of hot sub-Neptunes orbiting Sun-like stars, or is it just that exoplanets are very diverse? To find out, the researchers would like to observe more hot sub-Neptunes to determine if this is a unique case or a broader trend. They hope to gain insights into the formation and evolution of these common exoplanets.
“We’ve unlocked a new way to look at these sub-Neptunes,” said Davenport. “These high-temperature planets are amenable to characterization. So by looking at sub-Neptunes of this temperature, we’re perhaps more likely to accelerate our ability to learn about these planets.”
The team’s findings appear on May 5 in the Astrophysical Journal Letters.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Ann Jenkins – jenkins@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
Video: How to Study Exoplanets
Article: Webb’s Impact on Exoplanet Research
Video: How do we learn about a planet’s Atmosphere?
Learn more about exoplanets
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Exoplanet Stories
Universe
Share
Details
Last Updated May 04, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
-
By NASA
Skywatching Skywatching Home What’s Up What to See Tonight Meteor Showers Eclipses Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Eta Aquarids & Waiting for a Nova!
The first week of May brings the annual Eta Aquarid meteors, peaking on the 6th. And sometime in the next few months, astronomers predict a “new star” or nova explosion will become visible to the unaided eye.
Skywatching Highlights
All Month – Planet Visibility:
Venus: Appears very bright and low in the east in the hour before sunrise all month. Mars: Easy to find in the west in the first few hours of the night, all month long. Sets around midnight to 1 a.m. local time. Jupiter: Shines brightly in the west following sunset all month. Early in the month it sets about two hours after the Sun, but by late May it’s setting only an hour after sunset. Saturn: Begins the month next to Venus, low in the eastern sky before sunrise. Quickly separates from Saturn and rises higher in the sky each day before dawn. Daily Highlights
May 6 – Eta Aquarid Meteors – The peak of this annual shower is early on the morning of May 6th. The two or three nights before that are also decent opportunities to spy a few shooting stars. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. Seeing 10-20 meteors per hour is common for the Northern Hemisphere, while south of the equator, observers tend to see substantially more.
May 3 – Mars & Moon: The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening.
All month – Venus & Saturn: Low in the eastern sky each morning you’ll find bright Venus paired with much fainter Saturn. They start the month close together, but Saturn pulls away and rises higher over the course of the month.
All month – Mars & Jupiter: The planets to look for on May evenings are Mars and Jupiter. They’re visible for a couple of hours after sunset in the western sky.
All month – Corona Borealis: Practice finding this constellation in the eastern part of the sky during the first half of the night, so you have a point of comparison when the T CrB nova appears there, likely in the next few months.
Transcript
What’s Up for May? Four bright planets, morning and night, a chance of meteor showers, and waiting for a nova.
May Planet Viewing
For planet watching this month, you’ll find Mars and Jupiter in the west following sunset. Mars sticks around for several hours after it gets dark out, but Jupiter is setting by 9:30 or 10 p.m., and getting lower in the sky each day. The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening.
Sky chart showing Venus and Saturn with the crescent Moon in the predawn sky on May 23., 2025. NASA/JPL-Caltech In the morning sky, Venus and Saturn are the planets to look for in May. They begin the month appearing close together on the sky, and progressively pull farther apart as the month goes on. For several days in late May, early risers will enjoy a gathering of the Moon with Saturn and Venus in the eastern sky before dawn. Watch as the Moon passes the two planets while becoming an increasingly slimmer crescent. You’ll find the Moon hanging between Venus and Saturn on the 23rd.
Eta Aquarid Meteor Shower
Early May brings the annual Eta Aquarid meteor shower. These are meteors that originate from Comet Halley. Earth passes through the comet’s dust stream each May, and again in October. Eta Aquarids are fast moving, and a lot of them produce persistent dust trains that linger for seconds after the meteor’s initial streak.
This is one of the best annual showers in the Southern Hemisphere, but tends to be more subdued North of the Equator, where we typically see 10-20 meteors per hour. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. While the peak is early on the morning of May 6th, the two or three nights before that are also decent opportunities to spy a few shooting stars.
Waiting for a Nova
Sky chart showing constellation Corona Borealis with the location where nova “T CrB” is predicted to appear. The view depicts the constellation with the nova occurring, indicated by an arrow. NASA/JPL-Caltech Astronomers have been waiting expectantly for light from a distant explosion to reach us here on Earth. An event called a nova is anticipated to occur sometime in the coming months. Some 3,000 light years away is a binary star system called T Coronae Borealis, or “T CrB.” It consists of a red giant star with a smaller white dwarf star orbiting closely around it. Now the giant’s outer atmosphere is all puffed up, and the dwarf star is close enough that its gravity continually captures some of the giant’s hydrogen. About every 80 years, the white dwarf has accumulated so much of the other star’s hydrogen, that it ignites a thermonuclear explosion. And that’s the nova.
T Coronae Borealis is located in the constellation Corona Borealis, or the “Northern Crown,” and it’s normally far too faint to see with the unaided eye. But it’s predicted the nova will be as bright as the constellation’s brightest star, which is about as bright as the North Star, Polaris. You’ll find Corona Borealis right in between the two bright stars Arcturus and Vega, and you can use the Big Dipper’s handle to point you to the right part of the sky. Try having a look for it on clear, dark nights before the nova, so you’ll have a comparison when a new star suddenly becomes visible there.
A sky chart indicating how to locate the constellation Corona Borealis between the bright stars Arcturus and Vega. The Big Dipper’s handle points in the direction of Corona Borealis. NASA/JPL-Caltech Now, you may have heard about this months ago, as astronomers started keeping watch for the nova midway through 2024, but it hasn’t happened yet. Predicting exactly when novas or any sort of stellar outburst will happen is tricky, but excitement began growing when astronomers observed the star to dim suddenly, much as it did right before its previous nova in 1946. When the nova finally does occur, it won’t stay bright for long, likely flaring in peak brightness for only a few days. And since it’s not predicted again for another 80 years, you might just want to join the watch for this super rare, naked eye stellar explosion in the sky!
Here are the phases of the Moon for May.
The phases of the Moon for May 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science.
I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
Keep Exploring Discover More Topics From NASA
Skywatching
Planets
Solar System Exploration
Moons
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.