Members Can Post Anonymously On This Site
GSFC Office of the Chief Knowledge Officer – Case Studies
-
Similar Topics
-
By USH
For three days, military aircraft circled the quiet Welsh village of Pentyrch, as if anticipating something extraordinary. Then, on Friday, February 26, 2016 at exactly 2:30 AM, their patience was rewarded as a colossal black/glowing pyramid-shaped object suddenly materialized in the sky above the village.
What followed was a four-minute battle between military forces and unknown objects that left witnesses paralyzed and the government scrambling to cover their tracks.
Caz Clarke watched the entire encounter unfold from her backyard. She witnessed something “absolutely out of this world.”
She recalled being drawn outside in the early morning hours by an overwhelming light illuminating the fields behind her home. Above her loomed a massive pyramid-shaped object glowing in the night sky.
Clarke described how the UFO appeared to “scan” her before releasing two smaller objects, one red, one green, that split off in opposite directions.
For eight years, she fought the Ministry of Defense to uncover the truth. Her investigation revealed illegal operations, falsified documents, and a coordinated cover-up that reached the highest levels of government.
The evidence suggests our military has protocols for hunting UFOs and procedures for retrieval operations. This wasn’t an isolated event — it was part of an ongoing, hidden agenda.
View the full article
-
By NASA
6 Min Read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere and creating powerful explosions in a murky process called magnetic reconnection. A single magnetic reconnection event can release as much energy as the entire United States uses in a day.
NASA’s new TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will study magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
NASA’s TRACERS mission, or the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will fly in low Earth orbit through the polar cusps, funnel-shaped holes in the magnetic field, to study magnetic reconnection and its effects in Earth’s atmosphere. NASA’s Goddard Space Flight Center The TRACERS spacecraft are slated to launch no earlier than late July 2025 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The two TRACERS spacecraft will orbit Earth to study how the solar wind — a continuous outpouring of electrically charged particles from the Sun — interacts with Earth’s magnetic shield, the magnetosphere.
What Is Magnetic Reconnection?
As solar wind flows out from the Sun, it carries the Sun’s embedded magnetic field out across the solar system. Reaching speeds over one million miles per hour, this soup of charged particles and magnetic field plows into planets in its path.
“Earth’s magnetosphere acts as a protective bubble that deflects the brunt of the solar wind’s force. You can think of it as a bar magnet that’s rotating and floating around in space,” said John Dorelli, TRACERS mission science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “As the solar wind collides with Earth’s magnetic field, this interaction builds up energy that can cause the magnetic field lines to snap and explosively fling away nearby particles at high speeds — this is magnetic reconnection.”
Openings in Earth’s magnetic field at the North and South Poles, called polar cusps, act as funnels allowing charged particles to stream down towards Earth and collide with atmospheric gases. These phenomena are pieces of the space weather system that is in constant motion around our planet — whose impacts range from breathtaking auroras to disruption of communications systems and power grids. In May 2024, Earth experienced the strongest geomagnetic storm in over 20 years, which affected high-voltage power lines and transformers, forced trans-Atlantic flights to change course, and caused GPS-guided tractors to veer off-course.
How Will TRACERS Study Magnetic Reconnection?
The TRACERS mission’s twin satellites, each a bit larger than a washing machine, will fly in tandem, one behind the other, in a relatively low orbit about 360 miles above Earth. Traveling over 16,000 mph, each satellite hosts a suite of instruments to measure different aspects of extremely hot, ionized gas called plasma and how it interacts with Earth’s magnetosphere.
An artist’s concept of the twin TRACERS satellites in orbit above Earth. NASA’s Goddard Space Flight Center The satellites will focus where Earth’s magnetic field dips down to the ground at the North polar cusp. By placing the twin TRACERS satellites in a Sun-synchronous orbit, they always pass through Earth’s dayside polar cusp, studying thousands of reconnection events at these concentrated areas.
This will build a step-by-step picture of how magnetic reconnection changes over time and from Earth’s dayside to its nightside.
NASA’s TRICE-2 mission also studied magnetic reconnection near Earth, but with a pair of sounding rockets launched into the northern polar cusp over the Norwegian Sea in 2018.
“The TRICE mission took great data. It took a snapshot of the Earth system in one state. It proved that these instruments could make this kind of measurement and achieve this kind of science,” said David Miles, TRACERS principal investigator at the University of Iowa. “But the system’s more complicated than that. The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.”
The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.
DAVID MILES
TRACERS principal investigator, University of Iowa
Since previous missions could only take one measurement of an event per launch, too many changes in the region prevented forming a full picture. Following each other closely in orbit, the twin TRACERS satellites will provide multiple snapshots of the same area in rapid succession, spaced as closely as 10 seconds apart from each other, reaching a record-breaking 3,000 measurements in one year. These snapshots will build a picture of how the whole Earth system behaves in reaction to space weather, allowing scientists to better understand how to predict space weather in the magnetosphere.
Working Across Missions in Solar Harmony
The TRACERS mission will collaborate with other NASA heliophysics missions, which are strategically placed near Earth and across the solar system. At the Sun, NASA’s Parker Solar Probe closely observes our closest star, including magnetic reconnection there and its role in heating and accelerating the solar wind that drives the reconnection events investigated by TRACERS.
Data from recently launched NASA missions, EZIE (Electrojet Zeeman Imaging Explorer), studying electrical currents at Earth’s nightside, and PUNCH (Polarimeter to Unify the Corona and Heliosphere) studying the solar wind and interactions in Earth’s atmosphere, can be combined with observations from TRACERS. With research from these missions, scientists will be able to get a more complete understanding of how and when Earth’s protective magnetic shield can suddenly connect with solar wind, allowing the Sun’s material into Earth’s system.
“The TRACERS mission will be an important addition to NASA’s heliophysics fleet.” said Reinhard Friedel, TRACERS program scientist at NASA Headquarters in Washington. “The missions in the fleet working together increase understanding of our closest star to improve our ability to understand, predict, and prepare for space weather impacts on humans and technology in space.”
The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS that study changes in the magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
by Desiree Apodaca
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept of the TRACERS mission, which will help research magnetic reconnection and its effects in Earth’s atmosphere.
Credits: Andy Kale
Share
Details
Last Updated Jul 16, 2025 Related Terms
Goddard Space Flight Center Earth’s Magnetic Field Heliophysics Heliophysics Division The Sun The Sun & Solar Physics TRACERS Explore More
4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
Article
2 days ago
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
5 days ago
7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Goddard Space Flight Center Linking Satellite Data and… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
Seasonal snow plays a significant role in global water and energy cycles, and billions of people worldwide rely on snowmelt for water resources needs, including water supply, hydropower, agriculture, and more. Monitoring snow water equivalent (SWE) is critical for supporting these applications and for mitigating damages caused by snowmelt flooding, avalanches, and other snow-related disasters. However, our ability to measure SWE remains a challenge, particularly in northern latitudes where in situ SWE observations are sparse and satellite observations are impacted by the boreal forest and environmental conditions. Despite limited in situ SWE measurements, local residents in Arctic and sub-Arctic regions provide a vast and valuable body of place-based knowledge and observations that are essential for understanding snowpack behavior in northern regions.
As part of a joint NASA SnowEx, NASA’s Minority University Research and Education Project (MUREP) for American Indian and Alaska Native STEM (Science, Technology, Engineering, & Mathematics) Engagement (MAIANSE), and Global Learning & Observations to Benefit the Environment (GLOBE) Program partnership, a team of scientists including NASA intern Julia White (NASA Goddard Space Flight Center, University of Alaska Fairbanks), Carrie Vuyovich (NASA Goddard Space Flight Center), Alicia Joseph (NASA Goddard Space Flight Center), and Christi Buffington (University of Alaska Fairbanks, GLOBE Implementation Office) is studying snow water equivalent (SWE) across Interior Alaska. This project combines satellite-based interferometric synthetic aperture radar (InSAR) data, primarily from the Sentinel-1 satellite, with ground-based observations from the Snow Telemetry (SNOTEL) network and GLOBE (Global Learning Observations to Benefit the Environment). Together, these data sources help the team investigate how SWE varies across the landscape and how it affects local ecosystems and communities. The team is also preparing for future integration of data from NASA’s upcoming NISAR (NASA ISRO Synthetic Aperture Radar) mission, which is expected to enhance SWE retrieval capabilities.
After a collaborative visit to the classroom of Tammie Kovalenko in November 2024, Delta Junction junior and senior high school students in vocational agriculture (Vo Ag) classes, including members of Future Farmers of America (FFA), began collecting GLOBE data on a snowdrift located just outside their classroom. As the project progressed, students developed their own research questions. One student, Fianna Rooney, took the project even further — presenting research posters at both the GLOBE International Virtual Science Symposium (IVSS) and both the FFA Regional and National Conventions. Her work highlights the growing role of Alaskan youth in science, and how student-led inquiry can enrich both education and research outcomes. (This trip was funded by the NASA Science Activation Program’s Arctic and Earth SIGNs – STEM Integrating GLOBE & NASA – project at the University of Alaska Fairbanks.)
In February 2025, the team collaborated with Delta Junction Junior High and High School students, along with the Delta Junction Trails Association, to conduct a GLOBE Intensive Observation Period (IOP), “Delta Junction Snowdrifts,” to collect Landcover photos, snow depth, and snow water equivalent data. Thanks to aligned interests and research goals at the Alaska Satellite Facility (ASF), the project was further expanded into Spring 2025. Collaborators from ASF and the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) collected high resolution airborne data over the snowdrift at the Delta Junction Junior and Senior High School. This complementary dataset helped strengthen connections between satellite observations and ground-based student measurements.
This effort, led by a NASA intern, scientists, students, and Alaskan community members, highlights the power of collaboration in advancing science and education. Next steps will include collaboration with Native Alaskan communities near Delta Junction, including the Healy Lake Tribe, whose vast, generational knowledge will be of great value to deepening our understanding of Alaskan snow dynamics.
Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
Julia White and Delta Junction student following GLOBE protocols for snow depth. Tori Brannan Share
Details
Last Updated Jul 14, 2025 Editor NASA Science Editorial Team Location Goddard Space Flight Center Related Terms
Earth Science Goddard Space Flight Center MUREP Science Activation Explore More
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
3 days ago
7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…
Article
4 days ago
8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary
Article
4 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Teresa Sindelar always knew she wanted to be a part of human spaceflight, but she was unsure how to make that dream a reality until a chance encounter with former NASA astronaut Tom Stafford when she was 11 years old.
The pair met in a local jewelry shop near Sindelar’s Nebraska home, where Gen. Stafford was signing autographs. In addition to his photo, Gen. Stafford gave Sindelar a valuable tip – she should check out the Kansas Cosmosphere, a space museum in Hutchinson, Kansas. “I proceeded to attend every camp the Cosmosphere offered as a student, interned during college, and worked there full time while earning my graduate degree,” Sindelar said.
Official portrait of Teresa Sindelar.NASA She discovered a passion for teaching and mentoring young students through her work in the museum’s education department and a stint as a high school science teacher. When she began looking for opportunities at NASA, she sought a position that melded instruction with technical work. “I like pouring into others and watching them grow,” she said.
Today, Sindelar is a chief training officer (CTO) within the Flight Operations Directorate at NASA’s Johnson Space Center in Houston. Along with her fellow CTOs, Sindelar oversees the correct and complete training of NASA astronauts, crew members representing international partners, and all flight controllers. “I put the pieces together,” she said. “It is my job to make sure instructors, schedulers, outside partners, facility managers, and others are all in sync.” She added that CTOs have a unique position because they see the big picture of a training flow and understand the long-term training goals and objectives.
Teresa Sindelar received a 2025 Space Flight Awareness Program Honoree Award, presented by NASA astronaut Randy Bresnik.NASA “I get to do a lot of cool things and go to a lot of cool places,” she said, noting that the training facilities at Johnson and other NASA centers, as well as facilities managed by international partners, are top-notch. While she does enjoy watching astronauts work through problems and learn new systems, she has a special fondness for flight controller training and mentoring young professionals. “What fills my cup the most is seeing a brand-new employee right out of college blossom into a confident flight controller, do their job well, and make our missions better,” she said. “I like knowing that I had something to do with that.”
Sindelar has been part of the Johnson team since 2010 and worked as an educator in what was then called the center’s Office of Education and as a crew training instructor in the Space Medicine Operations Directorate before becoming a CTO. In March 2025, Sindelar received a Space Flight Awareness Program Honoree Award for her outstanding leadership in the Private Astronaut Mission (PAM) program, which is an important component of NASA’s strategy for enabling a robust and competitive commercial economy in low Earth orbit. As the lead CTO for the third PAM, Axiom Mission 3, Sindelar managed training while identifying critical inefficiencies, enhancing mission safety and performance. She spearheaded a key stakeholder retreat to streamline operations, reorganized training resources for improved accessibility, and implemented efficiency improvements that optimized mission support. Sindelar’s work was recognized during an award ceremony at NASA’s Kennedy Space Center in Florida, and she got to attend the launch of NASA’s SpaceX Crew-10 mission as a special guest.
In her 15 years with the agency, she has learned the importance of leading by example. “My team needs to see that I meet the bar I set,” she said. “Leading is about motivating your people so they are committed, not just compliant.”
Teresa Sindelar (front row, third from left) and her Space Medicine Operations crew training team with the crew members of Expedition 48.NASA Keeping a team motivated and on track is particularly important to training success and safety. “We only get a matter of months to train astronauts to do the most hazardous activities that humans have done, or to train flight controllers who literally have the mission and the lives of astronauts in their hands,” Sindelar said, adding that they cannot afford to have an unfocused or indifferent team.
Sindelar observed that Johnson’s training team is acutely aware of their responsibilities. “We live and work in the same communities as the crew members,” she said. “We see them at school functions, at the grocery store, at the park. We know their families are counting on us to bring their loved ones home safely.”
She has also learned that her voice matters. “When I was a young professional, I just never felt I could be influential, but the only person holding me back was me,” she said. “I had to learn to trust in my own instincts. That was definitely outside of my comfort zone.” She credits her mentors with helping her build confidence and knowing when and how to speak up. “I have had many giants of the spaceflight community mold and shape me in my career, from my counselors at the Cosmosphere all the way to flight directors and astronauts,” she said. “It is my privilege to learn from them, and I am grateful to each of them.”
Outside of work, Sindelar uses her voice in a different way – as part of her church choir. She also plays piano, stating that she is as passionate about music and volunteerism as she is about human spaceflight. She is a member of the Friendswood Volunteer Fire Department, as well, serving on its rehab team and as the department’s chaplain
Teresa Sindelar (second from right) and her family with a Friendswood Volunteer Fire Department fire engine. Image courtesy of Teresa Sindelar As NASA prepares to return humans to the Moon and journey on to Mars, Sindelar hopes she has taught the next generation of explorers enough so they can show the world the wonders of the universe. “This next generation will see and do things my generation never even thought of,” she said, adding that it is time for them to start leading. “Use your voice. Take care of each other along the way. Reach out and help the next one in line.”
Sindelar keeps a reminder of that important message on her desk: the picture Gen. Stafford signed all those years ago.
Explore More
3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 5 days ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room
Article 7 days ago 4 min read NASA Mission Monitoring Air Quality from Space Extended
Article 2 weeks ago View the full article
-
By Space Force
Chief of Space Operations Gen. Chance Saltzman traveled to Canada to attend the Royal Canadian Air Force Change of Command ceremony,
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.