Members Can Post Anonymously On This Site
What’s Up: May 2025 Skywatching Tips from NASA
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx mission is observing the entire sky in 102 infrared colors, or wavelengths of light not visible to the human eye. This image shows a section of sky in one wavelength (3.29 microns), revealing a cloud of dust made of a molecule similar to soot or smoke.NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), but the dust cloud is no longer visible. The molecules that compose the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color.NASA/JPL-Caltech After weeks of preparation, the space observatory has begun its science mission, taking about 3,600 unique images per day to create a map of the cosmos like no other.
Launched on March 11, NASA’s SPHEREx space observatory has spent the last six weeks undergoing checkouts, calibrations, and other activities to ensure it is working as it should. Now it’s mapping the entire sky — not just a large part of it — to chart the positions of hundreds of millions of galaxies in 3D to answer some big questions about the universe. On May 1, the spacecraft began regular science operations, which consist of taking about 3,600 images per day for the next two years to provide new insights about the origins of the universe, galaxies, and the ingredients for life in the Milky Way.
This video shows SPHEREx’s field of view as it scans across one section of sky inside the Large Magellanic Cloud, with rainbow colors representing the infrared wavelengths the telescope’s detectors see. The view from one detector array moves from purple to green, followed by the second array’s view, which changes from yellow to red. The images are looped four times. NASA/JPL-Caltech “Thanks to the hard work of teams across NASA, industry, and academia that built this mission, SPHEREx is operating just as we’d expected and will produce maps of the full sky unlike any we’ve had before,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This new observatory is adding to the suite of space-based astrophysics survey missions leading up to the launch of NASA’s Nancy Grace Roman Space Telescope. Together with these other missions, SPHEREx will play a key role in answering the big questions about the universe we tackle at NASA every day.”
From its perch in Earth orbit, SPHEREx peers into the darkness, pointing away from the planet and the Sun. The observatory will complete more than 11,000 orbits over its 25 months of planned survey operations, circling Earth about 14½ times a day. It orbits Earth from north to south, passing over the poles, and each day it takes images along one circular strip of the sky. As the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well so that after six months, the observatory will have looked out into space in every direction.
When SPHEREx takes a picture of the sky, the light is sent to six detectors that each produces a unique image capturing different wavelengths of light. These groups of six images are called an exposure, and SPHEREx takes about 600 exposures per day. When it’s done with one exposure, the whole observatory shifts position — the mirrors and detectors don’t move as they do on some other telescopes. Rather than using thrusters, SPHEREx relies on a system of reaction wheels, which spin inside the spacecraft to control its orientation.
Hundreds of thousands of SPHEREx’s images will be digitally woven together to create four all-sky maps in two years. By mapping the entire sky, the mission will provide new insights about what happened in the first fraction of a second after the big bang. In that brief instant, an event called cosmic inflation caused the universe to expand a trillion-trillionfold.
“We’re going to study what happened on the smallest size scales in the universe’s earliest moments by looking at the modern universe on the largest scales,” said Jim Fanson, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “I think there’s a poetic arc to that.”
Cosmic inflation subtly influenced the distribution of matter in the universe, and clues about how such an event could happen are written into the positions of galaxies across the universe. When cosmic inflation began, the universe was smaller than the size of an atom, but the properties of that early universe were stretched out and influence what we see today. No other known event or process involves the amount of energy that would have been required to drive cosmic inflation, so studying it presents a unique opportunity to understand more deeply how our universe works.
“Some of us have been working toward this goal for 12 years,” said Jamie Bock, the mission’s principal investigator at Caltech and JPL. “The performance of the instrument is as good as we hoped. That means we’re going to be able to do all the amazing science we planned on and perhaps even get some unexpected discoveries.”
Color Field
The SPHEREx observatory won’t be the first to map the entire sky, but it will be the first to do so in so many colors. It observes 102 wavelengths, or colors, of infrared light, which are undetectable to the human eye. Through a technique called spectroscopy, the telescope separates the light into wavelengths — much like a prism creates a rainbow from sunlight — revealing all kinds of information about cosmic sources.
For example, spectroscopy can be harnessed to determine the distance to a faraway galaxy, information that can be used to turn a 2D map of those galaxies into a 3D one. The technique will also enable the mission to measure the collective glow from all the galaxies that ever existed and see how that glow has changed over cosmic time.
And spectroscopy can reveal the composition of objects. Using this capability, the mission is searching for water and other key ingredients for life in these systems in our galaxy. It’s thought that the water in Earth’s oceans originated as frozen water molecules attached to dust in the interstellar cloud where the Sun formed.
The SPHEREx mission will make over 9 million observations of interstellar clouds in the Milky Way, mapping these materials across the galaxy and helping scientists understand how different conditions can affect the chemistry that produced many of the compounds found on Earth today.
More About SPHEREx
The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
For more about SPHEREx, visit:
https://science.nasa.gov/mission/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-063
Share
Details
Last Updated May 01, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
Article 3 hours ago 3 min read The Universe’s Brightest Lights Have Some Dark Origins
Did you know some of the brightest sources of light in the sky come from…
Article 1 day ago 8 min read How to Contribute to Citizen Science with NASA
A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen…
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have discovered a likely explanation for a fracture in a huge cosmic “bone” in the Milky Way galaxy, using NASA’s Chandra X-ray Observatory and radio telescopes.
The bone appears to have been struck by a fast-moving, rapidly spinning neutron star, or pulsar. Neutron stars are the densest known stars and form from the collapse and explosion of massive stars. They often receive a powerful kick from these explosions, sending them away from the explosion’s location at high speeds.
Enormous structures resembling bones or snakes are found near the center of the galaxy. These elongated formations are seen in radio waves and are threaded by magnetic fields running parallel to them. The radio waves are caused by energized particles spiraling along the magnetic fields.
X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk This new image shows one of these cosmic “bones” called G359.13142-0.20005 (G359.13 for short), with X-ray data from Chandra (colored blue) and radio data from the MeerKAT radio array in South Africa (colored gray). Researchers also refer to G359.13 as the Snake.
Examining this image closely reveals the presence of a break, or fracture, in the otherwise continuous length of G359.13 seen in the image. The combined X-ray and radio data provides clues to the cause of this fracture.
Astronomers have now discovered an X-ray and radio source at the location of the fracture, using the data from Chandra and MeerKAT and the National Science Foundation’s Very Large Array. A likely pulsar responsible for these radio and X-ray signals is labeled. A possible extra source of X-rays located near the pulsar may come from electrons and positrons (the anti-matter counterparts to electrons) that have been accelerated to high energies.
The researchers think the pulsar likely caused the fracture by smashing into G359.13 at a speed between one million and two million miles per hour. This collision distorted the magnetic field in the bone, causing the radio signal to also become warped.
At about 230 light-years long, G359.13 is one of the longest and brightest of these structures in the Milky Way. To put this into context, there are more than 800 stars within that distance from Earth. G359.13 is located about 26,000 light-years from Earth, near the center of the Milky Way.
A paper describing these results appeared in the May 2024 issue of the Monthly Notices of the Royal Astronomical Society and is available here. The authors of the study are Farhad Yusuf-Zadeh (Northwestern University), Jun-Hui Zhao (Center for Astrophysics | Harvard & Smithsonian), Rick Arendt (University of Maryland, Baltimore County), Mark Wardle (Macquarie University, Australia), Craig Heinke (University of Alberta), Marc Royster (College of the Sequoias, California), Cornelia Lang (University of Iowa), and Joseph Michail (Northwestern).
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Learn More
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features two composite images of a long, thin, cosmic structure. With the structure’s vertical orientation, seemingly fragile dimensions, and pale grey color against the blackness of space, the images resemble medical X-rays of a long, thin, bone. The main image shows the structure in its entirety. The inset image is an annotated close-up highlighting an apparent fracture in the bone-like structure.
The structure, called G359.13, or “The Snake”, is a Galactic Center Filament. These filament formations are threaded by parallel magnetic fields, and spiraling, energized particles. The particles cause radio waves, which can be detected by radio arrays, in this case by the MeerKAT array in South Africa.
In the first composite image, the largely straight filament stretches from the top to the bottom of the vertical frame. At each end of the grey filament is a hazy grey cloud. The only color in the image is neon blue, found in a few specks which dot the blackness surrounding the structure. The blue represents X-rays seen by NASA’s Chandra X-ray Observatory.
In the annotated close-up, one such speck appears to be interacting with the structure itself. This is a fast-moving, rapidly spinning neutron star, otherwise known as a pulsar. Astronomers believe that this pulsar has struck the filament halfway down its length, distorting the magnetic field and radio signal.
In both images, this distortion resembles a small break, or spur, in the bone-like filament.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
Explore This Section Projects Highlights Publications NASA Citizen Scientists Science Activation Resources 2 min read
Amateur Radio Scientists Shine at the 2025 HamSCI Workshop
A collage of Posters from HamSCI’s March workshop. You can read them all online! Love Ham Radio? The HamSCI project fosters collaboration between amateur radio operators and professional researchers. Its goals are to advance scientific research and understanding through amateur radio activities, encourage the development of modern technologies to support this research, and provide educational opportunities for the amateur community and the public.
HamSCI held its annual Workshop, ‘HamSCI’s Big Year’, at the New Jersey Institute of Technology in late March. Over 100 members of the HamSCI community attended: researchers, students (secondary through graduate level), and citizen scientist volunteers. Over the two-day event, in-person and virtual participants experienced twenty-five talks on topics ranging from analysis of HamSCI’s 2023/24 Festivals of Eclipse Ionospheric Science events to space weather observations made during the May 10, 2024 geomagnetic superstorm.
The Workshop hosted a variety of Keynote and Invited Tutorial speakers, including distinguished scientists and leaders in the Amateur (ham) Radio community. The Workshop concluded with a poster session, featuring current research, ongoing educational activities, and concepts for future events involving Sun-space-Earth science topics. Posters were submitted from the US, Brazil, Egypt, the United Kingdom, and Turkey.
Explore the workshop presentations and posters. Videos of conference presentations will be available at the HamSCI website in a few months.
HamSCI is supported by NASA, the National Science Foundation, and the Amateur Radio Digital Communications (ARDC) foundation.
Share
Details
Last Updated May 01, 2025 Related Terms
Citizen Science Get Involved Heliophysics Explore More
8 min read How to Contribute to Citizen Science with NASA
Article
2 days ago
3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
Article
2 days ago
3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
Article
1 week ago
View the full article
-
By NASA
Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
Image credit: NASA/Kim Shiflett
View the full article
-
By NASA
4 min read
May’s Night Sky Notes: How Do We Find Exoplanets?
Astronomers have been trying to discover evidence that worlds exist around stars other than our Sun since the 19th century. By the mid-1990s, technology finally caught up with the desire for discovery and led to the first discovery of a planet orbiting another sun-like star, Pegasi 51b. Why did it take so long to discover these distant worlds, and what techniques do astronomers use to find them?
The Transit Method
A planet passing in front of its parent star creates a drop in the star’s apparent brightness, called a transit. Exoplanet Watch participants can look for transits in data from ground-based telescopes, helping scientists refine measurements of the length of a planet’s orbit around its star. Credit: NASA’s Ames Research Center One of the most famous exoplanet detection methods is the transit method, used by Kepler and other observatories. When a planet crosses in front of its host star, the light from the star dips slightly in brightness. Scientists can confirm a planet orbits its host star by repeatedly detecting these incredibly tiny dips in brightness using sensitive instruments. If you can imagine trying to detect the dip in light from a massive searchlight when an ant crosses in front of it, at a distance of tens of miles away, you can begin to see how difficult it can be to spot a planet from light-years away! Another drawback to the transit method is that the distant solar system must be at a favorable angle to our point of view here on Earth – if the distant system’s angle is just slightly askew, there will be no transits. Even in our solar system, a transit is very rare. For example, there were two transits of Venus visible across our Sun from Earth in this century. But the next time Venus transits the Sun as seen from Earth will be in the year 2117 – more than a century from the 2012 transit, even though Venus will have completed nearly 150 orbits around the Sun by then!
The Wobble Method
As a planet orbits a star, the star wobbles. This causes a change in the appearance of the star’s spectrum called Doppler shift. Because the change in wavelength is directly related to relative speed, astronomers can use Doppler shift to calculate exactly how fast an object is moving toward or away from us. Astronomers can also track the Doppler shift of a star over time to estimate the mass of the planet orbiting it. NASA, ESA, CSA, Leah Hustak (STScI) Spotting the Doppler shift of a star’s spectra was used to find Pegasi 51b, the first planet detected around a Sun-like star. This technique is called the radial velocity or “wobble” method. Astronomers split up the visible light emitted by a star into a rainbow. These spectra, and gaps between the normally smooth bands of light, help determine the elements that make up the star. However, if there is a planet orbiting the star, it causes the star to wobble ever so slightly back and forth. This will, in turn, cause the lines within the spectra to shift ever so slightly towards the blue and red ends of the spectrum as the star wobbles slightly away and towards us. This is caused by the blue and red shifts of the star’s light. By carefully measuring the amount of shift in the star’s spectra, astronomers can determine the size of the object pulling on the host star and if the companion is indeed a planet. By tracking the variation in this periodic shift of the spectra, they can also determine the time it takes the planet to orbit its parent star.
Direct Imaging
Finally, exoplanets can be revealed by directly imaging them, such as this image of four planets found orbiting the star HR 8799! Space telescopes use instruments called coronagraphs to block the bright light from the host star and capture the dim light from planets. The Hubble Space Telescope has captured images of giant planets orbiting a few nearby systems, and the James Webb Space Telescope has only improved on these observations by uncovering more details, such as the colors and spectra of exoplanet atmospheres, temperatures, detecting potential exomoons, and even scanning atmospheres for potential biosignatures!
NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) You can find more information and activities on NASA’s Exoplanets page, such as the Eyes on Exoplanets browser-based program, The Exoplaneteers, and some of the latest exoplanet news. Lastly, you can find more resources in our News & Resources section, including a clever demo on how astronomers use the wobble method to detect planets!
The future of exoplanet discovery is only just beginning, promising rich rewards in humanity’s understanding of our place in the Universe, where we are from, and if there is life elsewhere in our cosmos.
Originally posted by Dave Prosper: July 2015
Last Updated by Kat Troche: April 2025
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.