Jump to content

Recommended Posts

Posted
Shape-Shifting Materials are advanced, adaptive materials capable of changing their physical form, embedding sensors and circuits directly into their structure, and even storing energy,  all without traditional wiring. Lockheed Martin is at the forefront of developing these futuristic materials, raising questions about the possible extraterrestrial origin of this technology. 

Shape-Shifting-Materials-%20Hidden%20UFO%20technolgy.jpg

In a previous article, we discussed why suppressed exotic technologies are suddenly being disclosed. One company that frequently comes up in this conversation is Lockheed Martin, the American defense and aerospace giant known for pushing the boundaries of aviation and space innovation. 

Imagine an aircraft that can grow its own skin, embed sensors into its body, store energy without wires, and even shift its shape mid-flight to adapt to changing conditions. This isn’t science fiction anymore, Lockheed Martin’s cutting-edge research is turning these futuristic concepts into reality. 

But where is all this coming from? 

The rapid development and creativity behind Lockheed Martin’s projects raise intriguing questions. Whistleblowers like David Grusch have recently alleged that Lockheed Martin has had access to recovered UFO materials for decades. Supporting this, Don Phillips,  a former Lockheed engineer,  confirmed years ago that exotic materials have been held and studied by the company since at least the 1950s. 

This suggests that for over half a century, Lockheed has secretly been engaged in researching and reverse-engineering off-world technologies. It's possible that the breakthroughs we’re seeing today are the result of this hidden legacy. Ben Rich, former head of Lockheed’s Skunk Works division, famously hinted at this when he said, "We now have the technology to take ET home." 

One particularly stunning development involves "smart" materials that behave almost like muscles, allowing aircraft structures to morph in real-time. These materials enable a craft to fine-tune its aerodynamics on the fly, adjusting instantly to turbulence, speed shifts, or mission-specific demands. 

Lockheed’s innovations go even further. By embedding carbon nanotubes, extremely strong and highly conductive microscopic structure, directly into the material, they have created surfaces that can transfer information and power without traditional wiring. In these next-generation aircraft, the "skin" itself acts as the nervous system, the energy grid, and the sensor network all at once. 

You can only imagine the kinds of technologies that have been developed over the years through the reverse engineering of exotic materials and recovered extraterrestrial craft. Yet, governments and space agencies remain tight-lipped about the existence of advanced alien civilizations, who likely introduced these techniques to Earth unintentionally.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The photograph was captured by the Mast Camera (Mastcam) aboard NASA’s Curiosity rover on Sol 3551 (August 2, 2022, at 20:43:28 UTC). 

      What stands out in the image are two objects, that appear strikingly out of place amid the natural Martian landscape of rocks and boulders. Their sharp edges, right angles, flat surfaces, and geometric symmetry suggest they may have been shaped by advanced cutting tools rather than natural erosion. 

      Could these ancient remnants be part of a destroyed structure or sculpture? If so, they may serve as yet another piece of evidence pointing to the possibility that Mars was once home to an intelligent civilization, perhaps even the advanced humanoid beings who, according to some theories, fled the catastrophic destruction of planet Maldek and sought refuge on the Red Planet. 
      Objects discovered by Jean Ward Watch Jean Ward's YouTube video on this topic: HereSee original NASA source: Here 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Jet Propulsion Laboratory perfected aerogel for the Stardust mission. Under Stardust, bricks of aerogel covered panels on a spacecraft that flew behind a comet, with the microporous material “soft catching” any particles that might strike it and preserving them for return to Earth.NASA Consisting of 99% air, aerogel is the world’s lightest solid. This unique material has found purpose in several forms — from NASA missions to high fashion.

      Driven by the desire to create a 3D cloud, Greek artist, Ioannis Michaloudis, learned to use aerogel as an artistic medium. His journey spanning more than 25 years took him to the Massachusetts Institute of Technology (MIT) in Cambridge; Shivaji University in Maharashtra, India, and NASA’s Jet Propulsion Laboratory in Southern California.
       
      A researcher at MIT introduced Michaloudis to aerogel after hearing of his cloud-making ambition, and he was immediately intrigued. Aerogel is made by combining a polymer with a solvent to create a gel and flash-drying it under pressure, leaving a solid filled with microscopic pores. 

      Scientists at JPL chose aerogel in the mid-1990s to enable the Stardust mission, with the idea that a porous surface could capture particles while flying on a probe behind a comet. Aerogel worked in lab tests, but it was difficult to manufacture consistently and needed to be made space-worthy. NASA JPL hired materials scientist Steve Jones to develop a flight-ready  aerogel, and he eventually got funding for an aerogel lab. 

      The aerogel AirSwipe bag Michaloudis created for Coperni’s 2024 fall collection debut appears almost luminous in its model’s hand. The bag immediately captured the world’s attention.Coperni
      The Stardust mission succeeded, and when Michaloudis heard of it, he reached out to JPL, where Jones invited him to the lab. Now retired, Jones recalled, “I went through the primer on aerogel with him, the different kinds you could make and their different properties.” The size of Jones’ reactor, enabling it to make large objects, impressed Michaloudis. With tips on how to safely operate a large reactor, he outfitted his own lab with one. 

      In India, Michaloudis learned recipes for aerogels that can be molded into large objects and don’t crack or shrink during drying. His continued work with aerogels has created an extensive art portfolio. 

      Michaloudis has had more than a dozen solo exhibitions. All his artwork involves aerogel, drawing attention with its unusual qualities. An ethereal, translucent blue, it casts an orange shadow and can withstand molten metals. 
      In 2020, Michaloudis created a quartz-encapsulated aerogel pendant for the centerpiece of that year’s collection from French jewelry house Boucheron. Michaloudis also captured the fashion and design world’s attention with a handbag made of aerogel, unveiled at Coperni’s 2024 fall collection debut. 

      NASA was a crucial step along the way. “I am what I am, and we made what we made thanks to the Stardust project,” said Michaloudis. 

      Read More Share
      Details
      Last Updated Jun 09, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Tech Gives Treadmill Users a ‘Boost’  
      Creators of the original antigravity treadmill continue to advance technology with new company.
      Article 2 weeks ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 3 weeks ago 3 min read Meet Four NASA Inventors Improving Life on Earth and Beyond
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Technology Transfer & Spinoffs
      Stardust
      NASA’s Stardust was the first spacecraft to bring samples from a comet to Earth, and the first NASA mission to…
      Solar System
      View the full article
    • By NASA
      4 Min Read Spacewalk Research and Technology
      NASA astronaut Anne McClain prepares spacesuits ahead of the May 2025 spacewalk. Credits: NASA Science in Space: May
      Crew members on the International Space Station periodically conduct spacewalks to perform a variety of tasks such as installing, upgrading, and repairing equipment. During a spacewalk on May 1, astronauts installed hardware to support the planned addition of a seventh roll-out solar array on the exterior of the space station. Each of these arrays produces more than 20 kilowatts of electricity and together they will increased power production by up to 30%, enabling more scientific operations on the orbiting lab.
      NASA astronaut Butch Wilmore collects samples from the exterior of the space station for ISS External Microorganisms.NASA Some spacewalks include operations for scientific research. On January 20, 2025, crew members collected samples for ISS External Microorganisms, an investigation examining whether microorganisms have exited through station vents and can survive in space. Results could help determine changes needed in design of spacecraft (including spacesuits) to prevent human-associated microbes from contaminating Mars and other exploration destinations.
      Radiation monitoring
      CSA astronaut Dave Williams on a spacewalk in 2007. CSA studied the radiation dose crew members experience while outside the station.NASA The CSA (Canadian Space Agency) investigation EVA Radiation Monitoring, used a miniature, power-efficient wireless radiation measurement system or dosimeter worn by crew members during spacewalks. This type of device could help identify parts of the body that are exposed to the highest radiation levels during spacewalks. Results showed that this type of device is a feasible way to monitor individual dose during spacewalks. The device also has potential uses on Earth, such as monitoring radiation exposure during cancer treatments.

      Spacesuit technology
      Spacesuits are essentially one-person spacecraft that protect their wearers from the hazards of space, including radiation and extreme temperatures. Space station research is helping improve the suits and tools for spacewalks and activities outside spacecraft and for the exploration of the Moon and Mars.
      SpaceSkin on ExHAM, a JAXA (Japan Aerospace Exploration Agency) investigation, evaluated the durability of a fabric with imbedded sensors to detect damage. Sensors integrated into the exposed outermost layer of a spacesuit could detect damage such as impacts from micrometeoroids. Researchers documented factors to consider in design of textiles with sensing capabilities as well as the ability to withstand the hazards of space. Such fabrics could be integrated into spacesuits and habitats to help protect astronauts on spacewalks and future exploration missions.
      NASA astronaut Patrick G. Forrester works with the MISSE facility.NASA Researchers use the Materials International Space Station Experiment or MISSE facility on the exterior of the space station for experiments exposing various materials and components to the harsh environment of space. Along with solar cells, electronics, and coatings, MISSE-7 tested pristine fibers from Apollo mission spacesuits and others scratched by lunar dust to examine the combined effects of abrasion and radiation damage. Researchers report that the fabrics significantly degraded, suggesting the need for ways to prevent or mitigate radiation damage to spacesuits on extended missions to the Moon.
      MISSE-9 tested spacesuit materials treated with shear-thickening fluids. These suspensions of tiny particles in a fluid react to stress by quickly changing from a liquid to a solid. The research showed that the materials maintained their mechanical performance characteristics and puncture resistance after extended exposure.
      Keeping cool also is important on a spacewalk, where temperatures can reach 250 degrees. SERFE, or Spacesuit Evaporation Rejection Flight Experiment, tested a technology using water evaporation to remove heat from a spacesuit so crew members and equipment remain at appropriate temperatures during spacewalks. A current cooling method, called sublimation, exposes small amounts of water to space, causing it to freeze and then turn into vapor that disperses, removing heat as it does so. The SERFE technology may be less susceptible to water contamination than sublimation.
      Exiting station
      The Nanoracks Bishop Airlock is attached to the Canadarm2 robotic arm as the International Space Station orbits 264 miles above the Atlantic Ocean off the coast of Brazil. Ocean off the coast of southern Brazil at the time of this photograph.NASA Crew members use specialized airlocks to exit the station for spacewalks. Airlocks also make it possible to deploy satellites and other external equipment. The Nanoracks Bishop Airlock was the first commercially owned and operated airlock installed on the space station. Its size, design, and automation enable faster and more efficient movement of materials out of and into the station, reducing the crew and robotics time needed. In addition to facilitating spacewalks, this facility could support increased commercial use of the space station and expand research capabilities.
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Space Station Technology Demonstration
      Humans In Space
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows the Moon’s hot interior and volcanism about 2 to 3 billion years ago. It is thought that volcanic activity on the lunar near side (the side facing Earth) helped create a landscape dominated by vast plains called mare, which are formed by molten rock that cooled and solidified. NASA/JPL-Caltech Analyzing gravity data collected by spacecraft orbiting other worlds reveals groundbreaking insights about planetary structures without having to land on the surface.
      Although the Moon and the asteroid Vesta are very different, two NASA studies use the same technique to reveal new details about the interiors of both.
      In the lunar study, published May 14 in the journal Nature, researchers developed a new gravity model of the Moon that includes tiny variations in the celestial body’s gravity during its elliptical orbit around Earth. These fluctuations cause the Moon to flex slightly due to Earth’s tidal force — a process called tidal deformation — which provides critical insights into the Moon’s deep internal structure.
      Using their model, the researchers produced the most detailed lunar gravitational map yet, providing future missions an improved way to calculate location and time on the Moon. They accomplished this by analyzing data on the motion of NASA’s GRAIL (Gravity Recovery and Interior Laboratory) mission, whose spacecraft, Ebb and Flow, orbited the Moon from Dec. 31, 2011, to Dec. 17, 2012.
      These views of the Moon’s near side, left, and far side were put together from observations made by NASA’s Lunar Reconnaissance Orbiter. NASA/JPL-Caltech In a second study, published in the journal Nature Astronomy on April 23, the researchers focused on Vesta, an object in the main asteroid belt between Mars and Jupiter. Using NASA’s Deep Space Network radiometric data and imaging data from the agency’s Dawn spacecraft, which orbited the asteroid from July 16, 2011, to Sept. 5, 2012, they found that instead of having distinct layers as expected, Vesta’s internal structure may be mostly uniform, with a very small iron core or no core at all.
      “Gravity is a unique and fundamental property of a planetary body that can be used to explore its deep interior,” said Park. “Our technique doesn’t need data from the surface; we just need to track the motion of the spacecraft very precisely to get a global view of what’s inside.”
      Lunar Asymmetry
      The lunar study looked at gravitational changes to the Moon’s near and far sides. While the near side is dominated by vast plains — known as mare — formed by molten rock that cooled and solidified billions of years ago, the far side is more rugged, with few plains.
      NASA’s Dawn mission obtained this image of the giant asteroid Vesta on July 24, 2011. The spacecraft spent 14 months orbiting the asteroid, capturing more than 30,000 images and fully mapping its surface. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Both studies were led by Ryan Park, supervisor of the Solar System Dynamics Group at NASA’s Jet Propulsion Laboratory in Southern California, and were years in the making due to their complexity. The team used NASA supercomputers to build a detailed map of how gravity varies across each body. From that, they could better understand what the Moon and Vesta are made of and how planetary bodies across the solar system formed.
      Some theories suggest intense volcanism on the near side likely caused these differences. That process would have caused radioactive, heat-generating elements to accumulate deep inside the near side’s mantle, and the new study offers the strongest evidence yet that this is likely the case.
      “We found that the Moon’s near side is flexing more than the far side, meaning there’s something fundamentally different about the internal structure of the Moon’s near side compared to its far side,” said Park. “When we first analyzed the data, we were so surprised by the result we didn’t believe it. So we ran the calculations many times to verify the findings. In all, this is a decade of work.”
      When comparing their results with other models, Park’s team found a small but greater-than-expected difference in how much the two hemispheres deform. The most likely explanation is that the near side has a warm mantle region, indicating the presence of heat-generating radioactive elements, which is evidence for volcanic activity that shaped the Moon’s near side 2 billion to 3 billion years ago.
      Vesta’s Evolution
      Park’s team applied a similar approach for their study that focused on Vesta’s rotational properties to learn more about its interior.  
      “Our technique is sensitive to any changes in the gravitational field of a body in space, whether that gravitational field changes over time, like the tidal flexing of the Moon, or through space, like a wobbling asteroid,” said Park. “Vesta wobbles as it spins, so we could measure its moment of inertia, a characteristic that is highly sensitive to the internal structure of the asteroid.”
      Changes in inertia can be seen when an ice skater spins with their arms held outward. As they pull their arms in, bringing more mass toward their center of gravity, their inertia decreases and their spin speeds up. By measuring Vesta’s inertia, scientists can gain a detailed understanding of the distribution of mass inside the asteroid: If its inertia is low, there would be a concentration of mass toward its center; if it’s high, the mass would be more evenly distributed.
      Some theories suggest that over a long period, Vesta gradually formed onion-like layers and a dense core. But the new inertia measurement from Park’s team suggests instead that Vesta is far more homogeneous, with its mass distributed evenly throughout and only a small core of dense material, or no core.
      Gravity slowly pulls the heaviest elements to a planet’s center over time, which is how Earth ended up with a dense core of liquid iron. While Vesta has long been considered a differentiated asteroid, a more homogenous structure would suggest that it may not have fully formed layers or may have formed from the debris of another planetary body after a massive impact.
      In 2016, Park used the same data types as the Vesta study to focus on Dawn’s second target, the dwarf planet Ceres, and results suggested a partially differentiated interior.
      Park and his team recently applied a similar technique to Jupiter’s volcanic moon Io, using data acquired by NASA’s Juno and Galileo spacecraft during their flybys of the Jovian satellite as well as from ground-based observations. By measuring how Io’s gravity changes as it orbits Jupiter, which exerts a powerful tidal force, they revealed that the fiery moon is unlikely to possess a global magma ocean.
      “Our technique isn’t restricted just to Io, Ceres, Vesta, or the Moon,” said Park. “There are many opportunities in the future to apply our technique for studying the interiors of intriguing planetary bodies throughout the solar system.”
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Vesta Dawn Earth's Moon GRAIL (Gravity Recovery And Interior Laboratory) Jet Propulsion Laboratory Planetary Science Small Bodies of the Solar System The Solar System Explore More
      7 min read Webb’s Titan Forecast: Partly Cloudy With Occasional Methane Showers
      Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to…
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      During the Piston Powered Auto-Rama at the I-X Center in Cleveland on Monday, March 31, 2025, NASA Glenn Research Center’s Salvadore Oriti, right, discusses the technology behind free-piston Stirling cycle machines. Credit: NASA/Kristin Jansen  NASA Glenn Research Center’s work in power and propulsion was on full display at the Piston Powered Auto-Rama at the I-X Center in Cleveland, March 28-30. The event is the largest indoor showcase of cars, trucks, motorcycles, tractors, and other engine-powered vehicles. 
      Center staff introduced guests to NASA’s Stirling engine technology, a free-piston Stirling power convertor that set records for accomplishing 14 years of maintenance-free operation at NASA Glenn in 2020. Attendees also explored how NASA is using space nuclear power to reach the deepest, dustiest, darkest, and most distant regions of our solar system through radioisotope power systems.  
      More than 57,500 people attended the event. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions 
      Article 31 mins ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 31 mins ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 32 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...