Jump to content

Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar


Recommended Posts

  • Publishers
Posted
Pilot Jeremy Johnson stands in a large hangar building in front of a blue-and-white PC-12 propeller aircraft with his arms crossed. He is wearing a dark blue NASA flight suit and black boots. Visible on the side of the plane are NASA logos, text that says, “Glenn Research Center” and “N606A,” and a small American flag.
Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.
Credit: NASA/Sara Lowthian-Hanna

Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.

As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”

This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.

Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.

Pilot Jeremy Johnson stands outside on a runway in front of a large, gray C-17 aircraft. He wears a dark green flight suit and brown boots and holds night vision goggles and a helmet in one arm. Visible on the side of the plane is text that says, “U.S. Air Force” and numbers that identify the aircraft.
Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.
Credit: Courtesy of Jeremy Johnson

He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.

“I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”

By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.

Pilot Jeremy Johnson sits in the cockpit of a PC-12 plane and reaches toward the front aircraft console. He wears a dark blue NASA flight suit with an American flag patch on the arm, sunglasses, and a black headset.
Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.
Credit: NASA/Sara Lowthian-Hanna

“It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”

Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.

Pilot Jeremy Johnson sits in the cockpit of a PC-12 plane and reaches toward the front aircraft console. He wears a dark blue NASA flight suit with an American flag patch on the arm, sunglasses, and a black headset.
Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.
Credit: NASA/Sara Lowthian-Hanna

Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.

Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.

“I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Roscosmos Progress 92 cargo spacecraft approaches the International Space Station on July 5, 2025, for an automated docking to the orbital complex’s Poisk module.Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft carrying about three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 93 resupply spacecraft is scheduled to launch at 11:54 a.m. EDT (8:54 p.m. Baikonur time), Thursday, Sept. 11, on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live coverage will begin at 11:30 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day journey to the station, the spacecraft will dock autonomously to the aft port of the station’s Zvezda module at 1:27 p.m. on Saturday, Sept. 13. NASA’s rendezvous and docking coverage will begin at 12:30 p.m. on NASA+, Amazon Prime, and more.
      The Progress 93 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew. Ahead of the spacecraft’s arrival, the Progress 91 spacecraft will undock from the Zvezda Service Module on Tuesday, Sept. 9. NASA will not stream the undocking.
      The International Space Station is a convergence of science, technology, and human innovation enabling research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in human exploration at the Moon and Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 05, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      6 Min Read Upcoming Launch to Boost NASA’s Study of Sun’s Influence Across Space
      Soon, there will be three new ways to study the Sun’s influence across the solar system with the launch of a trio of NASA and National Oceanic and Atmospheric Administration (NOAA) spacecraft. Expected to launch no earlier than Tuesday, Sept. 23, the missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft. 
      The three missions will launch together aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. From there, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around one million miles from Earth toward the Sun.
      The missions will each focus on different effects of the solar wind — the continuous stream of particles emitted by the Sun — and space weather — the changing conditions in space driven by the Sun — from their origins at the Sun to their farthest reaches billions of miles away at the edge of our solar system. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts. 
      The IMAP and Carruthers missions add to NASA’s heliophysics fleet of spacecraft. Together, NASA’s heliophysics missions study a vast, interconnected system from the Sun to the space surrounding Earth and other planets to the farthest limits of the Sun’s constantly flowing streams of solar wind. The SWFO-L1 mission, funded and operated by NOAA, will be the agency’s first satellite designed specifically for and fully dedicated to continuous, operational space weather observations.
      Mapping our home in space: IMAP
      The IMAP mission will study the heliosphere, our home in space.
      NASA/Princeton University/Patrick McPike As a modern-day celestial cartographer, IMAP will investigate two of the most important overarching issues in heliophysics: the interaction of the solar wind at its boundary with interstellar space and the energization of charged particles from the Sun.
      The IMAP mission will principally study the boundary of our heliosphere — a huge bubble created by the solar wind that encapsulates our solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond. The heliosphere protects the solar system from dangerous high-energy particles called galactic cosmic rays. Mapping the heliosphere’s boundaries helps scientists understand our home in space and how it came to be habitable. 
      “IMAP will revolutionize our understanding of the outer heliosphere,” said David McComas, IMAP mission principal investigator at Princeton University in New Jersey. “It will give us a very fine picture of what’s going on out there by making measurements that are 30 times more sensitive and at higher resolution than ever before.”
      The IMAP mission will also explore and chart the vast range of particles in interplanetary space. The spacecraft will provide near real-time observations of the solar wind and energetic particles, which can produce hazardous conditions not only in the space environment near Earth, but also on the ground. The mission’s data will help model and improve prediction capabilities of the impacts of space weather ranging from power-line disruptions to loss of satellites. 
      Imaging Earth’s exosphere: Carruthers Geocorona Observatory
      An illustration shows the Carruthers Geocorona Observatory spacecraft. NASA/BAE Systems Space & Mission Systems The Carruthers Geocorona Observatory, a small satellite, will launch with IMAP as a rideshare. The mission was named after Dr. George Carruthers, creator of the Moon-based telescope that captured the first images of Earth’s exosphere, the outermost layer of our planet’s atmosphere. 
      The Carruthers mission will build upon Dr. Carruthers’ legacy by charting changes in Earth’s exosphere. The mission’s vantage point at L1 offers a complete view of the exosphere not visible from the Moon’s relatively close distance to Earth. From there, it will address fundamental questions about the nature of the region, such as its shape, size, density, and how it changes over time.
      The exosphere plays an important role in Earth’s response to space weather, which can impact our technology, from satellites in orbit to communications signals in the upper atmosphere or power lines on the ground. During space weather storms, the exosphere mediates the energy absorption and release throughout the near-Earth space environment, influencing strength of space weather disturbances. Carruthers will help us better understand the fundamental physics of our exosphere and improve our ability to predict the impacts of the Sun’s activity.
      “We’ll be able to create movies of how this atmospheric layer responds when a solar storm hits, and watch it change with the seasons over time,” said Lara Waldrop, the principal investigator for the Carruthers Geocorona Observatory at the University of Illinois at Urbana-Champaign. 
      New space weather station: SWFO-L1
      SWFO-L1 will provide real-time observations of the Sun’s corona and solar wind to help forecast the resulting space weather.
      NOAA/BAE Systems Space & Mission Systems Distinct from NASA’s research satellites, SWFO-L1 will be an operational satellite, designed to observe solar activity and the solar wind in real time to provide critical data in NOAA’s mission to protect the nation from environmental hazards. SWFO-L1 will serve as an early-warning beacon for potentially damaging space weather events that could impact our technology on Earth. SWFO-L1 will observe the Sun’s outer atmosphere for large eruptions, called coronal mass ejections, and measure the solar wind upstream from Earth with a state-of-the-art suite of instruments and processing system.
      This mission is the first of a new generation of NOAA space weather observatories dedicated to 24/7 operations, working to avoid gaps in continuity. 
      “SWFO-L1 will be an amazing deep-space mission for NOAA,” said Dimitrios Vassiliadis, SWFO program scientist at NOAA. “Thanks to its advantageous location at L1, it will continuously monitor the solar atmosphere while measuring the solar wind and its interplanetary magnetic fields well before it impacts Earth — and transmit these data in record time.”
      With SWFO-L1’s enhanced performance, unobstructed views, and minimal delay between observations and data return, NOAA’s Space Weather Prediction Center forecasters will give operators improved lead time required to take precautionary actions that protect vital infrastructure, economic interests, and national security on Earth and in space.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Carruthers Geocorona Observatory (GLIDE) Heliophysics Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) NOAA (National Oceanic and Atmospheric Administration) Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      3 min read Juno Detected the Final Missing Auroral Signature from Jupiter’s Four Largest Moons


      Article


      2 days ago
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun


      Article


      2 weeks ago
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA and Northrop Grumman are preparing to send the company’s next cargo mission to the International Space Station, flying research to support Artemis missions to the Moon and human exploration of Mars and beyond, while improving life on Earth. SpaceX’s Falcon 9 rocket will launch Northrop Grumman’s 23rd commercial resupply services mission to the orbiting laboratory.
      The investigations aboard the Cygnus spacecraft aim to refine semiconductor crystals for next-generation technologies, reduce harmful microbes, improve medication production, and manage fuel pressure.
      NASA, Northrop Grumman, and SpaceX are targeting launch in mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Read about some of the investigations traveling to the space station:
      Better semiconductor crystals
      Optical micrograph of a semiconductor composite wafer with embedded semimetal phases extracted from a space grown crystal in the SUBSA facility during Mission 1United Semiconductors LLC Researchers are continuing to fine-tune in-space production of semiconductor crystals, which are critical for modern devices like cellphones and computers.
      The space station’s microgravity environment could enable large-scale manufacturing of complex materials, and leveraging the orbiting platform for crystal production is expected to lead to next-generation semiconductor technologies with higher performance, chip yield, and reliability.
      “Semiconductor devices fabricated using crystals from a previous mission demonstrated performance gain by a factor of two and device yield enhanced by a factor of 10 compared to Earth-based counterparts,” said Partha S. Dutta, principal investigator, United Semiconductors LLC in Los Alamitos, California.
      Dutta highlighted that three independent parties validated microgravity’s benefits for growing semiconductor crystals and that the commercial value of microgravity-enhanced crystals could be worth more than $1 million per kilogram (2.2 pounds).
      Space-manufactured crystals could help meet the need for radiation-hardened, low-power, high-speed electronics and sensors for space systems. They also could provide reduced power use, increased speed, and improved safety. The technology also has ground applications, including electric vehicles, waste heat recovery, and medical tools.
      Learn more about the SUBSA-InSPA-SSCug experiment.
      Lethal light
      Germicidal Ultraviolet (UV) light is emitted by an optical fiber running through the center of an agar plateArizona State University Researchers are examining how microgravity affects ultraviolet (UV) light’s ability to prevent the formation of biofilms — communities of microbes that form in water systems. Investigators developed special optical fibers to deliver the UV light, which could provide targeted, long-lasting, and chemical-free disinfection in space and on Earth.
      “In any water-based system, bacterial biofilms can form on surfaces like pipes, valves, and sensors,” said co-investigator Paul Westerhoff, a professor at Arizona State University in Tempe. “This can cause serious problems like corrosion and equipment failure, and affect human health.”
      The UV light breaks up DNA in microorganisms, preventing them from reproducing and forming biofilms. Preliminary evidence suggests biofilms behave differently in microgravity, which may affect how the UV light reaches and damages bacterial DNA.
      “What we’ll learn about biofilms and UV light in microgravity could help us design safer water and air systems not just for space exploration, but for hospitals, homes, and industries back on Earth,” Westerhoff said.
      Learn more about the GULBI experiment.
      Sowing seeds for pharmaceuticals
      NASA astronaut Loral O’Hara displays the specialized sample processor used for pharmaceutical research aboard the International Space StationNASA An investigation using a specialized pharmaceutical laboratory aboard the space station examines how microgravity may alter and enhance crystal structures of drug molecules. Crystal structure can affect the production, storage, effectiveness, and administration of medications.
      “We are exploring drugs with applications in cardiovascular, immunologic, and neurodegenerative disease as well as cancer,” said principal investigator Ken Savin of Redwire Space Technologies in Greenville, Indiana. “We expect microgravity to yield larger, more uniform crystals.”
      Once the samples return to Earth, researchers at Purdue University in West Lafayette, Indiana, will examine the crystal structures.
      The investigators hope to use the space-made crystals as seeds to produce significant numbers of crystals on Earth.
      “We have demonstrated this technique with a few examples, but need to see if it works in many examples,” Savin said. “It’s like being on a treasure hunt with every experiment.”
      This research also helps enhance and expand commercial use of the space station for next-generation biotechnology research and in-space production of medications.
      Learn more about the ADSEP PIL-11 experiment.
      Keeping fuel cool
      iss0NASA astronaut Joe Acaba installs hardware for the first effort in 2017 aboard the International Space Station to test controlling pressure in cryogenic fuel tanksNASA Many spacecraft use cryogenic or extremely cold fluids as fuel for propulsion systems. These fluids are kept at hundreds of degrees below zero to remain in a liquid state, making them difficult to use in space where ambient temperatures can vary significantly. If these fluids get too warm, they turn into gas and boiloff, or slowly evaporate and escape the tank, affecting fuel efficiency and mission planning.
      A current practice to prevent this uses  onboard fuel to cool systems before transferring fuel, but this practice is wasteful and not feasible for Artemis missions to the Moon and future exploration of Mars and beyond. A potential alternative is using special gases that do not turn into liquids at cold temperatures to act as a barrier in the tank and control the movement of the fuel.
      Researchers are testing this method to control fuel tank pressure in microgravity. It could save an estimated 42% of propellant mass per year, according to Mohammad Kassemi, a researcher at NASA’s National Center for Space Exploration Research and Case Western Reserve University in Cleveland.
      The test could provide insights that help improve the design of lightweight, efficient, long-term in-space cryogenic storage systems for future deep space exploration missions.
      Learn more about the ZBOT-NC experiment. 
      Download high-resolution photos and videos of the research highlighted in this feature.
      Learn more about the research aboard the International Space Station at:
      www.nasa.gov/iss-science
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology Resources
      Space Station Research Results
      Humans In Space
      View the full article
    • By NASA
      NASA NASA astronauts Jonny Kim and Zena Cardman, both Expedition 73 Flight Engineers, pose for a portrait inside the International Space Station‘s Unity module during a break in weekend housecleaning and maintenance activities. Kim and Cardman are both part of NASA Astronaut Group 22 selected in June 2017 with 12 other astronauts, including two Canadian Space Agency astronauts, and affectionately nicknamed “The Turtles.”
      In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done by astronauts on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.
      Learn more about station activities by following the space station blog.
      View the full article
    • By NASA
      Patricia White is a contracting officer at NASA’s Stennis Space Center, where she contributes to NASA’s Artemis program that will send astronauts to the Moon to prepare for future human exploration of Mars. NASA/Danny Nowlin When NASA’s Artemis II mission launches in 2026, it will inspire the world through discovery in a new Golden Age of innovation and exploration.
      It will be another inspiring NASA moment Patricia White can add to her growing list.
      White supports the Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars as a contracting officer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      White takes special pride in the test operations contract she helped draft. The contract provides support to the Fred Haise Test Stand, which tests the RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket on Artemis missions.
      “I was awestruck the first time I witnessed an engine test,” White said. “I remember how small I felt in comparison to this big and fascinating world, and I wondered what that engine would see that I would never be able to see.”
      Four RS-25 engines tested at NASA Stennis will help launch Artemis II with four astronauts to venture around the Moon. As the first crewed Artemis mission, it will represent another milestone for the nation’s human space exploration effort.
      From Interstate Signs to NASA Career
      White describes NASA Stennis as a hidden gem. Growing up in nearby Slidell, Louisiana, she had driven by the interstate signs pointing toward NASA Stennis her entire life.
      When she heard about a job opportunity at the center, she immediately applied. Initially hired as a contractor with only a high school diploma in February 2008, White found her motivation among NASA’s ranks.
      “I work with very inspiring people, and it only took one person to say, ‘You should go to college’ to give me the courage to go so late in life,” she said.
      Hard But Worth It
      White began college classes in her 40s and finished at 50. She balanced a marriage, full-time job, academic studies, and household responsibilities. When she started her educational journey, her children were either toddlers or newborns. They were growing up as she stayed in school for nine years while meeting life’s challenges.
      “It was hard, but it was so worth it,” she said. “I love my job and what I do, and even though it is crazy busy, I look forward to working at NASA every single day.”
      She joined NASA officially in 2013, going from contractor to civil servant.
      Setting an Example
      White’s proudest work moment came when she brought home the NASA Early Career Achievement award and medal. It served as a tangible symbol of her success she could share with her family.
      “It was a long road from being hired as an intern, and we all made extraordinary sacrifices,” she said. “I wanted to share it with them and set a good example for my children.”
      As Artemis II prepares to carry humans back to lunar orbit for the first time in over 50 years, White takes pride knowing her work helps power humanity’s return to deep space exploration. Her work is proof that sometimes the most important journeys begin right in one’s own backyard.
      Learn More About Careers at NASA Stennis Explore More
      4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 1 week ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 3 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 4 months ago View the full article
  • Check out these Videos

×
×
  • Create New...