Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

As associate administrator for NASA’s Space Operations Mission Directorate Ken Bowersox puts it, “nothing happens without communications.”  

And effective communications require the use of radio waves.  

None of NASA’s exciting science and engineering endeavors would be possible without the use of radio waves to send data, communications, and commands between researchers or flight controllers and their flight platforms or instruments.  

Reflecting on his time as a pilot, commander, and mission specialist during the Space Shuttle Program, Bowersox says, “If you’re not there physically, you can’t be a part of the team. But if you’re getting the data, whether it’s video, telemetry data with states of switches, or individual parameters on temperatures or pressures, then you can act on it and provide information to the spacecraft team so they can do the right thing in their operation.”  

These vital data and communications functions, as well as the gathering of valuable scientific data through remote sensing applications, all use radio frequencies (RF) within the electromagnetic spectrum. NASA centers and facilities also use the RF spectrum to support their everyday operations, including the walkie-talkies used by security guards, air traffic control systems around airfields, and even office Wi-Fi routers and wireless keyboards.  

Nothing happens without communications.

Ken Bowersox

Ken Bowersox

NASA Astronaut & Associate Administrator for NASA's Space Operations Mission Directorate

All of NASA’s uses of the RF spectrum are shared, with different radio services supporting other kinds of uses. Service allocation is a fundamental concept in spectrum regulation and defines how the spectrum is shared between different types of applications. A service allocation defines ranges, or bands, of radio frequencies that can be used by a particular type of radio service. For example, a television broadcasting satellite operates in frequency bands allocated to the broadcasting satellite service, terrestrial cellular services operate in bands allocated for the mobile service, and the communications antennas on the International Space Station (ISS) operate in bands allocated to space operations service.   

However, an allocation is not a license to operate — it does not authorize a specific system or operator to use particular frequencies. Such authority is granted through domestic and international regulatory processes.  

Most frequency bands of the RF spectrum are shared, and each frequency band typically has two or more radio services allocated to it. Careful spectrum regulation, planning, and management aim to identify mutually compatible services to share frequency bands while limiting its negative impacts. 

NASA’s Most Notable Spectrum Uses 

Many of NASA’s most notable uses of spectrum rely on the following service allocations: 

  • Earth exploration-satellite service   
  • Space research service     
  • Space operations service 
  • Inter-satellite service 

Note that allocations in the Earth exploration-satellite service and the space research service are designated either for communications links in the Earth-to-space, space-to-Earth, or space-to-space directions or designated for active or passive sensing of Earth or celestial objects (respectively) to differentiate the types of uses within the service and afford the requisite protections.

Watch the video to learn more about how each kind of system uses the radio frequency spectrum
NASA

Share

Details

Last Updated
Apr 23, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA Launching Rockets Into Radio-Disrupting Clouds
      NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
      The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
      An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
      The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
      The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
      “There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
      A Mystery at the Equator
      Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
      In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
      Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
      A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
      But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
      “We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
      Taking to the Skies
      To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
      Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
      The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
      On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
      Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
      “Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jun 12, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
      9 min read The Earth Observer Editor’s Corner: April–June 2025


      Article


      22 hours ago
      5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation


      Article


      22 hours ago
      6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb


      Article


      2 days ago
      Keep Exploring Discover Related Topics
      Sounding Rockets



      Ionosphere, Thermosphere & Mesosphere



      Space Weather


      Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…


      Solar System


      View the full article
    • By NASA
      A new online portal by NASA and the Alaska Satellite Facility maps satellite radar meas-urements across North America, enabling users to track land movement since 2016 caused by earthquakes, landslides, volcanoes, and other phenomena.USGS An online tool maps measurements and enables non-experts to understand earthquakes, subsidence, landslides, and other types of land motion.
      NASA is collaborating with the Alaska Satellite Facility in Fairbanks to create a powerful web-based tool that will show the movement of land across North America down to less than an inch. The online portal and its underlying dataset unlock a trove of satellite radar measurements that can help anyone identify where and by how much the land beneath their feet may be moving — whether from earthquakes, volcanoes, landslides, or the extraction of underground natural resources such as groundwater.
      Spearheaded by NASA’s Observational Products for End-Users from Remote Sensing Analysis (OPERA) project at the agency’s Jet Propulsion Laboratory in Southern California, the effort equips users with information that would otherwise take years of training to produce. The project builds on measurements from spaceborne synthetic aperture radars, or SARs, to generate high-resolution data on how Earth’s surface is moving.
      The OPERA portal shows how land is sinking in Freshkills Park, which is being built on the site of a former landfill on Staten Island, New York. Landfills tend to sink over time as waste decomposes and settles. The blue dot marks the spot where the portal is showing movement in the graph.Alaska Satellite Facility Formally called the North America Surface Displacement Product Suite, the new dataset comes ready to use with measurements dating to 2016, and the portal allows users to view those measurements at a local, state, and regional scales in a few seconds. For someone not using the dataset or website, it could take days or longer to do a similar analysis.
      “You can zoom in to your country, your state, your city block, and look at how the land there is moving over time,” said David Bekaert, the OPERA project manager and a JPL radar scientist. “You can see that by a simple mouse click.”
      The portal currently includes measurements for millions of pixels across the U.S. Southwest, northern Mexico, and the New York metropolitan region, each representing a 200-foot-by-200-foot (60-meter-by-60-meter) area on the ground. By the end of 2025, OPERA will add data to cover the rest of the United States, Central America, and Canada within 120 miles (200 kilometers) of the U.S. border. When a user clicks on a pixel, the system pulls measurements from hundreds of files to create a graph visualizing the land surface’s cumulative movement over time.
      Land is rising at the Colorado River’s outlet to the Gulf of California, as indicated in this screenshot from the OPERA portal. The uplift is due to the sediment from the river building up over time. The graph shows that the land at the blue dot has risen about 8 inches (20 centimeters) since 2016.Alaska Satellite Facility “The OPERA project automated the end-to-end SAR data processing system such that users and decision-makers can focus on discovering where the land surface may be moving in their areas of interest,” said Gerald Bawden, program scientist responsible for OPERA at NASA Headquarters in Washington. “This will provide a significant advancement in identifying and understanding potential threats to the end users, while providing cost and time savings for agencies.” 
      For example, water-management bureaus and state geological surveys will be able to directly use the OPERA products without needing to make big investments in data storage, software engineering expertise, and computing muscle.
      How It Works
      To create the displacement product, the OPERA team continuously draws data from the ESA (European Space Agency) Sentinel-1 radar satellites, the first of which launched in 2014. Data from NISAR, the NASA-ISRO (Indian Space Research Organisation) Synthetic Aperture Radar mission, will be added to the mix after that spacecraft launches later this year.
      The OPERA portal shows that land near Willcox, Arizona, subsided about 8 inches (20 centimeters) since between 2016 and 2021, in large part due to groundwater pumping. The region is part of an area being managed by state water officials.Alaska Satellite Facility Satellite-borne radars work by emitting microwave pulses at Earth’s surface. The signals scatter when they hit land and water surfaces, buildings, and other objects. Raw data consists of the strength and time delay of the signals that echo back to the sensor. 
      To understand how land in a given area is moving, OPERA algorithms automate steps in an otherwise painstaking process. Without OPERA, a researcher would first download hundreds or thousands of data files, each representing a pass of the radar over the point of interest, then make sure the data aligned geographically over time and had precise coordinates.
      Then they would use a computationally intensive technique called radar interferometry to gauge how much the land moved, if at all, and in which direction — towards the satellite, which would indicate the land rose, or away from the satellite, which would mean it sank.
      “The OPERA project has helped bring that capability to the masses, making it more accessible to state and federal agencies, and also users wondering, ‘What’s going on around my house?’” said Franz Meyer, chief scientist of the Alaska Satellite Facility, a part of the University of Alaska Fairbanks Geophysical Institute.
      Monitoring Groundwater
      Sinking land is a top priority to the Arizona Department of Water Resources. From the 1950s through the 1980s, it was the main form of ground movement officials saw, as groundwater pumping increased alongside growth in the state’s population and agricultural industry. In 1980, the state enacted the Groundwater Management Act, which reduced its reliance on groundwater in highly populated areas and included requirements to monitor its use.
      The department began to measure this sinking, called subsidence, with radar data from various satellites in the early 2000s, using a combination of SAR, GPS-based monitoring, and traditional surveying to inform groundwater-management decisions.
      Now, the OPERA dataset and portal will help the agency share subsidence information with officials and community members, said Brian Conway, the department’s principal hydrogeologist and supervisor of its geophysics unit. They won’t replace the SAR analysis he performs, but they will offer points of comparison for his calculations. Because the dataset and portal will cover the entire state, they also could identify areas not yet known to be subsiding.
      “It’s a great tool to say, ‘Let’s look at those areas more intensely with our own SAR processing,’” Conway said.
      The displacement product is part of a series of data products OPERA has released since 2023. The project began in 2020 with a multidisciplinary team of scientists at JPL working to address satellite data needs across different federal agencies. Through the Satellite Needs Working Group, those agencies submitted their requests, and the OPERA team worked to improve access to information to aid a range of efforts such as disaster response, deforestation tracking, and wildfire monitoring.
      NASA-Led Project Tracking Changes to Water, Ecosystems, Land Surface News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-076
      Share
      Details
      Last Updated Jun 06, 2025 Related Terms
      Earth Science Earth Science Division Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 9 mins ago 8 min read ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop
      Introduction On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission…
      Article 1 day ago 5 min read Jack Kaye Retires After a Storied Career at NASA
      Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      L. Y. Zhou, a senior at Skyline High School, Ann Arbor, MI, representing the SunRISE Ground Radio Lab (GRL) summer research project team at the Solar Heliospheric and INterplanetary Environment (SHINE) conference, held in Juneau, AK in August 2024. Other contributing high school students were S. Rajavelu-Mohan (Washtenaw Technical Middle College, Ann Arbor, MI), M. I. Costacamps-Rivera (Centro Residencial de Oportunidades Educativas de Mayagüez, Mayagüez, PR), E. Schneider (Marquette Senior High School, Marquette, MI), and L. Cui (Skyline High School, Ann Arbor, MI). Solar radio bursts, intense blasts of radio emission associated with solar flares, can wreak havoc on global navigation systems. Now, as part of the Ground Radio Lab campaign led by the University of Michigan and NASA’s SunRISE (Sun Radio Interferometer Space Experiment) mission, which is managed by the agency’s Jet Propulsion Laboratory in Southern California, high school and college students across the nation are collecting, processing, and analyzing space weather data to help better understand these bursts. 
      Participating students have presented their findings at local science fairs and national conferences, including the Solar Heliospheric and INterplanetary Environment (SHINE) conference held in Juneau, Alaska in August 2024. These students sifted through thousands of hours of observations to identify and categorize solar radio bursts.  
      Your school can get involved too! 
      Participating high schools receive free, self-paced online training modules sponsored by the SunRISE mission that cover a range of topics, including radio astronomy, space physics, and science data collection and analysis. Students and teachers participate in monthly webinars with space science and astronomy experts, build radio telescopes from kits, and then use these telescopes to observe low frequency emissions from the Sun and other objects like Jupiter and the Milky Way. 
      Visit the Ground Radio Lab website to learn more about the new campaign and apply to participate.
      Share








      Details
      Last Updated May 28, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 


      Article


      2 weeks ago
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists


      Article


      2 weeks ago
      6 min read NASA Observes First Visible-light Auroras at Mars


      Article


      2 weeks ago
      View the full article
    • By NASA
      Explore This Section Projects Highlights Publications NASA Citizen Scientists Science Activation Resources 2 min read
      Amateur Radio Scientists Shine at the 2025 HamSCI Workshop
      A collage of Posters from HamSCI’s March workshop. You can read them all online! Love Ham Radio? The HamSCI project fosters collaboration between amateur radio operators and professional researchers. Its goals are to advance scientific research and understanding through amateur radio activities, encourage the development of modern technologies to support this research, and provide educational opportunities for the amateur community and the public. 
      HamSCI held its annual Workshop, ‘HamSCI’s Big Year’, at the New Jersey Institute of Technology in late March. Over 100 members of the HamSCI community attended: researchers, students (secondary through graduate level), and citizen scientist volunteers. Over the two-day event, in-person and virtual participants experienced twenty-five talks on topics ranging from analysis of HamSCI’s 2023/24 Festivals of Eclipse Ionospheric Science events to space weather observations made during the May 10, 2024 geomagnetic superstorm.
      The Workshop hosted a variety of Keynote and Invited Tutorial speakers, including distinguished scientists and leaders in the Amateur (ham) Radio community.  The Workshop concluded with a poster session, featuring current research, ongoing educational activities, and concepts for future events involving Sun-space-Earth science topics.  Posters were submitted from the US, Brazil, Egypt, the United Kingdom, and Turkey.
      Explore the workshop presentations and posters.  Videos of conference presentations will be available at the HamSCI website in a few months.
      HamSCI is supported by NASA, the National Science Foundation, and the Amateur Radio Digital Communications (ARDC) foundation.
      Share








      Details
      Last Updated May 01, 2025 Related Terms
      Citizen Science Get Involved Heliophysics Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      2 days ago
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      2 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      1 week ago
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In our modern wireless world, almost all radio frequency (RF) spectrum bands are shared among multiple users. In some domains, similar users technically coordinate to avoid interference. The spectrum management team, part of NASA’s SCaN (Space Communications and Navigation) Program, represents the collaborative efforts across U.S. agencies and the international community to protect and enable NASA’s current and future spectrum-dependent science, exploration, and innovation.     
      Coordination with Other Spectrum Stakeholders
      NASA works to promote the collaborative use of the RF spectrum around Earth, and beyond. For example, NASA coordinates closely with other U.S. government agencies, international civil space agencies, and the private sector to ensure missions that overlap in time, location, and frequency do not cause or receive interference that could jeopardize their success. The spectrum management team protects NASA’s various uses of the spectrum by collaborating with U.S. and international spectrum users on technical matters that inform regulatory discussions.  
      As a founding member of the Space Frequency Coordination Group, NASA works with members of governmental space- and science-focused agencies from more than 35 countries. The Space Frequency Coordination Group annual meetings provide a forum for multilateral discussion and consideration of international spectrum regulatory issues related to Earth, lunar, and deep space research and exploration. The Space Frequency Coordination Group also provides a forum for the exchange of technical information to facilitate coordination for specific missions and enable efficient use of limited spectrum resources in space. 
      Domestic and International Spectrum Regulators 
      Creating and maintaining the global spectrum regulations that govern spectrum sharing requires collaboration and negotiation among all its diverse users. The International Telecommunication Union manages the global spectrum regulatory framework to optimize the increasing, diverse uses of the RF spectrum and reduce the likelihood of RF systems experiencing interference. U.S. regulators at the National Telecommunications and Information Administration and the Federal Communications Commission are responsible for developing and administering domestic spectrum regulations.  Organizations across the world cooperatively plan and regulate spectrum use.  The spectrum management team participates on behalf of NASA at both national and international levels to ensure that the U.S. domestic and international spectrum regulatory framework supports and enables NASA’s current and future missions.  
      NASA collaborates with domestic and international spectrum stakeholders to provide technical expertise on space spectrum topics to ensure regulations continue to enable space exploration, science, and innovation.NASA Share
      Details
      Last Updated Apr 23, 2025 Related Terms
      General Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...