Members Can Post Anonymously On This Site
NASA’s SPHEREx Team To Ring New York Stock Exchange Bell
-
Similar Topics
-
By NASA
Explore This Section Science For Educators NUBE: New Card Game Helps… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Different clouds types can have different effects on our weather and climate, which makes identifying cloud types important – but learning to identify cloud types can be tricky! Educational games make the learning process easier and more enjoyable for learners of all ages and create an opportunity for families and friends to spend quality time together.
The NASA Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) and the Queens Public Library co-developed a new Global Learning & Observations to Benefit the Environment (GLOBE) card game called NUBE (pronounced noo-beh) – the Spanish word for cloud. During this fun, interactive game, players match cards by cloud type or sky color – with 11 cloud types and 5 shades of blue (in real life, sky color can be an indication of how many aerosols are in the atmosphere). There are also special cards in the deck, such as Rainmakers, which change the order of play; Obscurations, which require the next player to draw two cards; and Mystery cards, which require players to give hints while other players guess the cloud type. By playing the game, participants practice learning the names of clouds while they begin to appreciate the differences in cloud type and sky color.
NESEC is collaborating with another NASA Science Activation project team – NASA@ My Library (NAML, led by the Space Science Institute, SSI – to get the game into library programs. NAML recruited and is distributing sets of two or four card decks to 292 U.S. libraries. Participating libraries are located in 45 states, with a large number (>50%) serving rural communities. SSI also promoted the opportunity to its network of libraries and co-presented a webinar with NESEC for interested libraries. Library applications described how they plan to use the game with their patrons, including programs for audiences ranging from kids to seniors related to weather and safety programs, citizen science clubs, home school groups, summer reading, game nights, circulating kits and more. Libraries that receive NUBE commit to use the game in at least one program and complete a short evaluation survey.
NUBE evolved through several iterations as staff from several Queens Public Library branches tested the game with different age groups, from young kids to teens and adults. The game was also tested at the Challenger Center and the Center for Science, Technology, Education, & Mathematics (STEM) Teaching and Learning at Northern Arizona University. Alex Hernandez Bonifacio, an early Learning Educator at Queens Public Library reported, “It was amazing to see what kids reflected on as they were playing NUBE. For example, there was this third grader who was surprised to realize something could obscure our view of the clouds. She used to think clouds were too high in the sky for anything to block our view of them. While playing NUBE, she became very intrigued about the obscuration cards, and she realized that things closer to the ground like heavy snow could in fact block our view of the clouds!” After incorporating feedback from testers and counting the votes for different graphic design options, NUBE is now ready to be downloaded and enjoyed by all!
If you’re excited to play this awesome GLOBE Clouds card game and want to learn even more about clouds, you can download the GLOBE Observer app on your smartphone to participate in hands-on NASA scientific research – sharing observations of your environment as a citizen scientist (no citizenship required)! Learn more and discover additional resources for engaging in clouds activities with the GLOBE Observer Clouds Toolkit.
NESEC, led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A, is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
NUBE, a GLOBE Clouds card game Share
Details
Last Updated Aug 01, 2025 Editor NASA Science Editorial Team Related Terms
Clouds Earth Science For Educators Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Science Activation Explore More
3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day
Article
1 week ago
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
Article
2 weeks ago
3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
“Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
“As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
The rovers and instruments that are part of this newly awarded flight include:
MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
Lead development organization: NASA’s Langley Research Center in Hampton, Virginia. Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
To learn more about CLPS and Artemis, visit:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nilufar.ramji@nasa.gov
Share
Details
Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
-
By NASA
3 min read
Adam and Hirsa Present Research on the Ring-Sheared Drop
Abnormal fibrous, extracellular, proteinaceous deposits found in organs and tissues are associated with neurodegenerative diseases such as Alzheimer’s. (“Amyloid fibril formation in microgravity: Distinguishing interfacial and flow effects” NNX13AQ22G). The Ring Sheared Drop investigation studies the biophysics of protein amyloidogenesis in the absence of gravity in order to study fibril formation at fluid interfaces, in the absence of solid walls. NASA Researchers across Space Biology and Physical Sciences come together for a special presentation at the May PSI Users Group.
The Ring-Sheared Drop (RSD) is a Microgravity Science Glovebox experiment that launched in July 2019 to the ISS to study shearing flow in the absence of solid walls. The major goals of this project were to adapt and use the RSD module to develop and test predictive models of non-Newtonian flow of high-concentration proteins at the interface.
At the May Physical Sciences Informatics (PSI) User Group, Dr. Joe Adam, Research Scientist at Rensselaer Polytechnic Institute and University Payload Director of the RSD module, presented, “Protein Solution Hydrodynamic Studies in the Ring-Sheared Drop” detailing the history of RSD, research campaigns and data to be released in PSI. This investigation was led by Principal Investigator, Prof. Amir Hirsa of Rensselaer Polytechnic Institute.
The ring-sheared drop interfacial bioprocessing of pharmaceuticals-I (RSD-IBP-I) campaign aimed to study non-Newtonian interfacial hydrodynamics of the blood transport proteins bovine serum albumin (BSA) and human serum albumin (HSA) in microgravity. Specifically, scientific aims focus on the effects of protein primary structure (BSA or HSA), protein concentration and interfacial shear rate on microgravity fluid flow, measured using velocimetry of hollow glass microsphere tracer particles within protein samples. This campaign intended to confer improved understanding of interfacial protein flows in relation to physiology, the environment, and industry relevant to both spaceflight and Earth. Results from this line of research could have applications to in situ pharmaceutical production, tissue engineering, and diseases such as Alzheimer’s, Parkinson’s, infectious prions, and type 2 diabetes.
To encourage collaboration across common areas of BPS’s Physical Sciences and Biology research, PSI invited Ryan Scott, ALSDA lead Scientist, and members of the ADBR (Alz Disease & Brain Resilience) and Parkinson’s AWG subgroups to attendee this month’s meeting which fueled discussions and led to several connections. During the discussions the two relevant collaborative publications that were shared are:
McMackin, P., Adam, J., Griffin, S. et al. Amyloidogenesis via interfacial shear in a containerless biochemical reactor aboard the International Space Station. npj Microgravity 8, 41 (2022). https://doi.org/10.1038/s41526-022-00227-2 Nilufar Ali paper resulting in part from a collaboration within the Parkison’s AWG subgroup Ali, N., Beheshti, A. & Hampikian, G. Space exploration and risk of Parkinson’s disease: a perspective review. npj Microgravity 11, 1 (2025). https://doi.org/10.1038/s41526-024-00457-6
Ring-Sheared Drop – Interfacial Bioprocessing of Pharmaceuticals(RSD-IBP-I) is now accessible in PSI. http://doi.org/10.60555/smat-bb74
Share
Details
Last Updated Jul 29, 2025 Related Terms
Uncategorized Explore More
1 min read 2025 NASA Space Apps Challenge
Article
22 hours ago
2 min read OSDR Chats with Begum Mathyk
Article
22 hours ago
4 min read Helio Highlights: June 2025
Article
2 weeks ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
April 8, 2025Kenny Contreras April 10, 2025 April 10, 2025 April 10, 2025 On-Site Lodging at Ames
The Exchange at Ames operates a variety of lodging options, right on center.
If you’re visiting Ames for an extended period, you’ll need lodging that’s in the area, and affordable. This article will go over the lodging options that we have on-center.
Who May Stay?
Personnel in the following categories are considered eligible:
APPEL course participants ARC college student program participants TDY visitors to NASA or other federal agencies on official orders Visiting university faculty, post-doctoral students (to NASA only) Visitors to ARC or other federal agency on-site contractors to conduct NASA or resident agency related business Active duty or reserve-on-active-duty military with orders ARC employees conducting business facilitated by overnight accommodation (e.g. ongoing experiment, major conference) ARC employees for their personal convenience NASA and military service retirees Accompanying family members of the above NRP Tenants and their guests (foreign nationals must be cleared through security prior to NRP and lodge access)
Making A Reservation
Please contact the front desk for all inquiries.
Business Hours: Monday – Friday, 8:30am – 4:00pm
Phone: (650) 604-8100
Email: info@nasalodge.com
Check-In: 3:00 PM (Contactless check-in is available after business hours.)
Check-Out: 11:00 AM
All reservations require an email address and a cell phone number. Credit card information is required prior to check-in by calling the front desk. Cancellations or changes must be done at least 24 hours prior to check-in via email at info@nasalodge.com or calling the front desk at (650) 604-8100. If you fail to cancel your reservation, you will be charged for one night’s stay.
Building 19 Premium King Room
24 Remodeled Modern Rooms Luxurious Restroom with Walk-in Shower & Towel Warmers Central A/C & Heating Spacious Closet Space Work Desk Space Mini Refrigerator with Freezer Flat Screen TV with Full DirecTV Access Including HBO, Showtime, Cinemax, Etc. In-Room Safe Complimentary Coffee & Bottled Water Iron & Ironing Board Robust Power Outlets USB-A & USB-C Dimmable Lighting Keyless RFID Entry NASA-Connect Accessible Free Parking Complimentary Breakfast
Building 19- Standard Queen Room
20 Remodeled Queen Rooms A/C Window Unit Heater Unit Work Desk Space Private Bathroom Mini Refrigerator with freezer Flatscreen TV In-Room Safe Iron & Iron Board NASA-Connect Accessible Free Parking Complimentary Breakfast
Buildings 583 A & B Dorms
Queen & Twin Size Bed Options Work Desk Space Private Restroom Microwave Refrigerator with Freezer (Size varies) Access Communal Kitchen NASA-Connect Accessible Flatscreen TV Available in Select Rooms Back to SVEC Home
View the full article
-
By NASA
When a reservoir conduit cannot be closed, thousands of cubic feet of water can roar through uncontrolled, threatening public safety, irreplaceable reservoir storage, and power generation. Seal Team Fix invites engineers, fabricators, and creative problem-solvers to stop that torrent in its tracks. Your mission: design a rapid-deploying, temporary seal that can be deployed to a submerged 3- to 25-ft diameter conduit opening, accommodate differential pressure, and achieve a 95–98 % flow reduction – without leaning on trash racks or other non-structural surfaces. The competition unfolds in three phases: a short-format concept white paper, a funded prototype build, and a lab-scale hydraulic demonstration.
Award: $575,000 in total prizes
Open Date: July 22, 2025
Close Date: October 14, 2025
For more information, visit: https://www.herox.com/SealTeamFix
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.