Members Can Post Anonymously On This Site
Power on the Dark Side: Stimulus-Responsive Adsorbents for Low-Energy Controlled Storage and Delivery of Low Boiling Fuels to Mobile Assets in Permanently Shaded Regions
-
Similar Topics
-
By NASA
This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
“Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
“As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
The rovers and instruments that are part of this newly awarded flight include:
MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
Lead development organization: NASA’s Langley Research Center in Hampton, Virginia. Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
To learn more about CLPS and Artemis, visit:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nilufar.ramji@nasa.gov
Share
Details
Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
-
By NASA
As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:
“Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”
Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.
Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio.
What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun.
Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies. Radio JOVE collaborated with SunRISE Ground Radio Lab, organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!
A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share
Details
Last Updated Jul 23, 2025 Related Terms
Citizen Science Heliophysics Explore More
2 min read Bring NASA Science into Your Library!
Article
2 days ago
4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…
Article
6 days ago
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
Article
7 days ago
View the full article
-
By NASA
4 Min Read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/Kathy Henkel In the vacuum of space, where temperatures can plunge to minus 455 degrees Fahrenheit, it might seem like keeping things cold would be easy. But the reality is more complex for preserving ultra-cold fluid propellants – or fuel – that can easily overheat from onboard systems, solar radiation, and spacecraft exhaust. The solution is a method called cryogenic fluid management, a suite of technologies that stores, transfers, and measures super cold fluids for the surface of the Moon, Mars, and future long-duration spaceflight missions.
Super cold, or cryogenic, fluids like liquid hydrogen and liquid oxygen are the most common propellants for space exploration. Despite its chilling environment, space has a “hot” effect on these propellants because of their low boiling points – about minus 424 degrees Fahrenheit for liquid hydrogen and about minus 298 for liquid oxygen – putting them at risk of boiloff.
In a first-of-its-kind demonstration, teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are testing an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling which could prevent the loss of valuable propellant.
“Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall. “Two-stage cooling prevents propellant loss and successfully allows for long-term storage of propellants whether in transit or on the surface of a planetary body.”
The new technique, known as “tube on tank” cooling, integrates two cryocoolers, or cooling devices, to keep propellant cold and thwart multiple heat sources. Helium, chilled to about minus 424 degrees Fahrenheit, circulates through tubes attached to the outer wall of the propellant tank.
NASA’s two-stage cooling testing setup sits in a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Tom Perrin The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama.NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel Teams installed the propellant tank in a test stand at NASA Marshall in early June, and the 90-day test campaign is scheduled to conclude in September. The tank is wrapped in a multi-layer insulation blanket that includes a thin aluminum heat shield fitted between layers. A second set of tubes, carrying helium at about minus 298 Fahrenheit, is integrated into the shield. This intermediate cooling layer intercepts and rejects incoming heat before it reaches the tank, easing the heat load on the tube-on-tank system.
To prevent dangerous pressure buildup in the propellant tank in current spaceflight systems, boiloff vapors must be vented, resulting in the loss of valuable fuel. Eliminating such propellant losses is crucial to the success of NASA’s most ambitious missions, including future crewed journeys to Mars, which will require storing large amounts of cryogenic propellant in space for months or even years. So far, cryogenic fuels have only been used for missions lasting less than a week.
“To go to Mars and have a sustainable presence, you need to preserve cryogens for use as rocket or lander return propellant,” Henkel said. “Rockets currently control their propellant through margin, where larger tanks are designed to hold more propellant than what is needed for a mission. Propellant loss isn’t an issue with short trips because the loss is factored into this margin. But, human exploration missions to Mars or longer stays at the Moon will require a different approach because of the very large tanks that would be needed.”
The Cryogenic Fluid Management Portfolio Project is a cross-agency team based at NASA Marshall and the agency’s Glenn Research Center in Cleveland. The cryogenic portfolio’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, and is comprised of more than 20 individual technology development activities.
Learn more about cryogenic fluid management:
https://go.nasa.gov/cfm
Share
Details
Last Updated Jul 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Cryogenic Fluid Management (CFM) Marshall Space Flight Center Space Technology Mission Directorate Technology Demonstration Technology Demonstration Missions Program Explore More
3 min read NASA-Derived Textiles are Touring France by Bike
Article 2 hours ago 3 min read Registration Opens for 2025 NASA International Space Apps Challenge
Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Melissa Harris’ official NASA portrait. NASA/Robert Markowitz With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.
Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program.
Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team.
Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”
Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.
Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition.
Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson.
Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris Learn more about NASA’s Commercial Low Earth Orbit Development Program at:
www.nasa.gov/commercialspacestations
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From Sunday, June 22 to Wednesday, July 2, two research aircraft will make a series of low-altitude atmospheric research flights near Philadelphia, Baltimore, and some Virginia cities, including Richmond, as well as over the Los Angeles Basin, Salton Sea, and Central Valley in California.
NASA’s P-3 Orion aircraft, based out of the agency’s Wallops Flight Facility in Virginia, along with Dynamic Aviation’s King Air B200 aircraft, will fly over parts of the East and West coasts during the agency’s Student Airborne Research Program. The science flights will be conducted between June 22 and July 2, 2025. NASA/Garon Clark Pilots will operate the aircraft at altitudes lower than typical commercial flights, executing specialized maneuvers such as vertical spirals between 1,000 and 10,000 feet, circling above power plants, landfills, and urban areas. The flights will also include occasional missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface.
The East Coast flights will be conducted between June 22 and Thursday, June 26 over Baltimore and near Philadelphia, as well as near the Virginia cities of Hampton, Hopewell, and Richmond. The California flights will occur from Sunday, June 29 to July 2.
The flights, part of NASA’s Student Airborne Research Program (SARP), will involve the agency’s Airborne Science Program’s P-3 Orion aircraft (N426NA) and a King Air B200 aircraft (N46L) owned by Dynamic Aviation and contracted by NASA. The program is an eight-week summer internship program that provides undergraduate students with hands-on experience in every aspect of a scientific campaign.
The P-3, operated out of NASA’s Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft outfitted with a six-instrument science payload to support a combined 40 hours of SARP science flights on each U.S. coast. The King Air B200 will fly at the same time as the P-3 but in an independent flight profile. Students will assist in the operation of the science instruments on the aircraft to collect atmospheric data.
“The SARP flights have become mainstays of NASA’s Airborne Science Program, as they expose highly competitive STEM students to real-world data gathering within a dynamic flight environment,” said Brian Bernth, chief of flight operations at NASA Wallops.
“Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,” said Bernth. “Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.”
For more information about Student Airborne Research Program, visit:
https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Jun 20, 2025 Related Terms
Airborne Science Aeronautics Wallops Flight Facility View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.