Jump to content

Power on the Dark Side: Stimulus-Responsive Adsorbents for Low-Energy Controlled Storage and Delivery of Low Boiling Fuels to Mobile Assets in Permanently Shaded Regions


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

ECF 2024 Quadchart McGuirk.pdf

Christopher McGuirk

Colorado School of Mines

This project will investigate and develop improved storage methods for the fuels needed to generate electrical power in places where sunlight is not available. The effort will focus on particularly tailored materials called Metal Oxide Frameworks, or MOFs, that can be used to store methane and oxygen. The methane and oxygen can be reacted in a solid oxide fuel cell to generate electricity, and storing them in a MOF could potentially result in significant mass and cost savings over traditional storage tanks which also require active pressure and thermal regulation. The team will use a number of computational and experimental tools to develop a MOF structure suitable for this application.

Back to ECF 2024 Full List

Share

Details

Last Updated
Apr 18, 2025
Editor
Loura Hall

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Daily images of ice cover in the Arctic Ocean (left) and around Antarctica reveal sea ice formation and melting at the poles over the course of two years (Sept 14, 2023 to Sept. 13, 2025).Trent Schindler/NASA’s Scientific Visualization Studio With the end of summer approaching in the Northern Hemisphere, the extent of sea ice in the Arctic shrank to its annual minimum on Sept. 10, according to NASA and the National Snow and Ice Data Center. The total sea ice coverage was tied with 2008 for the 10th-lowest on record at 1.78 million square miles (4.60 million square kilometers). In the Southern Hemisphere, where winter is ending, Antarctic ice is still accumulating but remains relatively low compared to ice levels recorded before 2016.
      The areas of ice covering the oceans at the poles fluctuate through the seasons. Ice accumulates as seawater freezes during colder months and melts away during the warmer months. But the ice never quite disappears entirely at the poles. In the Arctic Ocean, the area the ice covers typically reaches its yearly minimum in September. Since scientists at NASA and the National Oceanic and Atmospheric Administration (NOAA) began tracking sea ice at the poles in 1978, sea ice extent has generally been declining as global temperatures have risen. 
      “While this year’s Arctic sea ice area did not set a record low, it’s consistent with the downward trend,” said Nathan Kurtz, chief of the Cryospheric Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Arctic ice reached its lowest recorded extent in 2012. Ice scientist Walt Meier of the National Snow and Ice Data Center at the University of Colorado, Boulder, attributes that record low to a combination of a warming atmosphere and unusual weather patterns. This year, the annual decline in ice initially resembled the changes in 2012. Although the melting tapered off in early August, it wasn’t enough to change the year-over-year downward trend. “For the past 19 years, the minimum ice coverage in the Arctic Ocean has fallen below the levels prior to 2007,” Meier said. “That continues in 2025.” 
      Antarctic sea ice nearing annual maximum
      As ice in the Arctic reaches its annual minimum, sea ice around the Antarctic is approaching its annual maximum. Until recently, ice in the ocean around the Southern pole has been more resilient than sea ice in the North, with maximum coverage increasing slightly in the years before 2015. “This year looks lower than average,” Kurtz said. “But the Antarctic system as a whole is more complicated,” which makes predicting and understanding sea ice trends in the Antarctic more difficult. 
      It’s not yet clear whether lower ice coverage in the Antarctic will persist, Meier said. “For now, we’re keeping an eye on it” to see if the lower sea ice levels around the South Pole are here to stay or only part of a passing phase. 
      A history of tracking global ice 
      For nearly five decades, NASA and NOAA have relied on a variety of satellites to build a continuous sea ice record, beginning with the NASA Nimbus-7 satellite (1978–1987) and continuing with the Special Sensor Microwave/Imager and the Special Sensor Microwave Imager Sounder on Defense Meteorological Satellite Program satellites that began in 1987. The Advanced Microwave Scanning Radiometer–for EOS on NASA’s Aqua satellite also contributed data from 2002 to 2011. Scientists have extended data collection with the 2012 launch of the Advanced Microwave Scanning Radiometer 2 aboard a JAXA (Japan Aerospace Exploration Agency) satellite.
      With the launch of ICESat-2 in 2018, NASA has added the continuous observation of ice thickness to its recording. The ICESat-2 satellite measures ice height by recording the time it takes for laser light from the satellite to reflect from the surface and travel back to detectors on board.
      “We’ve hit 47 years of continuous monitoring of the global sea ice extent from satellites,” said Angela Bliss, assistant chief of NASA’s Cryospheric Sciences Laboratory. “This data record is one of the longest, most consistent satellite data records in existence, where every single day we have a look at the sea ice in the Arctic and the Antarctic.”
      By James Riordon
      NASA Goddard Space Flight Center
      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Sep 17, 2025 LocationNASA Goddard Space Flight Center Related Terms
      Earth Goddard Space Flight Center Ice & Glaciers ICESat-2 (Ice, Cloud and land Elevation Satellite-2) Explore More
      5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      Article 1 year ago 4 min read Cool Ways of Studying the Cryosphere
      One of the key elements of Earth’s climate system is the cryosphere – the many…
      Article 7 years ago 7 min read Earth’s cryosphere is vital for everyone. Here’s how NASA keeps track of its changes.
      Article 4 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The IAU (International Astronomical Union), an international non-governmental research organization and global naming authority for celestial objects, has approved official names for features on Donaldjohanson, an asteroid NASA’s Lucy spacecraft visited on April 20. In a nod to the fossilized inspiration for the names of the asteroid and spacecraft, the IAU’s selections recognize significant sites and discoveries on Earth that further our understanding of humanity’s origins.
      The asteroid was named in 2015 after paleoanthropologist Donald Johanson, discoverer of one of the most famous fossils ever found of a female hominin, or ancient human ancestor, nicknamed Lucy. Just as the Lucy fossil revolutionized our understanding of human evolution, NASA’s Lucy mission aims to revolutionize our understanding of solar system evolution by studying at least eight Trojan asteroids that share an orbit with Jupiter.
      Postcard commemorating NASA’s Lucy spacecraft April 20, 2025, encounter with the asteroid Donaldjohanson. NASA’s Goddard Space Flight Center Donaldjohanson, located in the main asteroid belt between the orbits of Mars and Jupiter, was a target for Lucy because it offered an opportunity for a comprehensive “dress rehearsal” for Lucy’s main mission, with all three of its science instruments carrying out observation sequences very similar to the ones that will occur at the Trojans.
      After exploring the asteroid and getting to see its features up close, the Lucy science and engineering team proposed to name the asteroid’s surface features in recognition of significant paleoanthropological sites and discoveries, which the IAU accepted.
      The smaller lobe is called Afar Lobus, after the Ethiopian region where Lucy and other hominin fossils were found. The larger lobe is named Olduvai Lobus, after the Tanzanian river gorge that has also yielded many important hominin discoveries.
      The asteroid’s neck, Windover Collum, which joins those two lobes, is named after the Windover Archeological Site near Cape Canaveral Space Force Station in Florida — where NASA’s Lucy mission launched in 2021. Human remains and artifacts recovered from that site revolutionized our understanding of the people who lived in Florida around 7,300 years ago.
      Officially recognized names of geologic features on the asteroid Donaldjohanson. NASA Goddard/SwRI/Johns Hopkins APL Two smooth areas on the asteroid’s neck are named Hadar Regio, marking the specific site of Johanson’s discovery of the Lucy fossil, and Minatogawa Regio, after the location where the oldest known hominins in Japan were found. Select boulders and craters on Donaldjohanson are named after notable fossils ranging from pre-Homo sapiens hominins to ancient modern humans. The IAU also approved a coordinate system for mapping features on this uniquely shaped small world.
      As of Sept. 9, the Lucy spacecraft was nearly 300 million miles (480 million km) from the Sun en route to its August 2027 encounter with its first Trojan asteroid called Eurybates. This places Lucy about three quarters of the way through the main asteroid belt. Since its encounter with Donaldjohanson, Lucy has been cruising without passing close to any other asteroids, and without requiring any trajectory correction maneuvers.
      The team continues to carefully monitor the instruments and spacecraft as it travels farther from the Sun into a cooler environment.
      Stay tuned at nasa.gov/lucy for more updates as Lucy continues its journey toward the never-before-explored Jupiter Trojan asteroids.
      By Katherine Kretke
      Southwest Research Institute
      Explore More
      5 min read Avatars for Astronaut Health to Fly on NASA’s Artemis II


      Article


      1 day ago
      3 min read Weird Ways to Observe the Moon


      Article


      1 day ago
      2 min read Hubble Surveys Cloudy Cluster


      Article


      4 days ago
      View the full article
    • By Space Force
      The Department of the Air Force is aligning with a new federal initiative to overhaul how government services are designed and delivered, a move leaders say will sharpen warfighting readiness, increase lethality and save taxpayer dollars.
      View the full article
    • By NASA
      Patricia White is a contracting officer at NASA’s Stennis Space Center, where she contributes to NASA’s Artemis program that will send astronauts to the Moon to prepare for future human exploration of Mars. NASA/Danny Nowlin When NASA’s Artemis II mission launches in 2026, it will inspire the world through discovery in a new Golden Age of innovation and exploration.
      It will be another inspiring NASA moment Patricia White can add to her growing list.
      White supports the Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars as a contracting officer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      White takes special pride in the test operations contract she helped draft. The contract provides support to the Fred Haise Test Stand, which tests the RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket on Artemis missions.
      “I was awestruck the first time I witnessed an engine test,” White said. “I remember how small I felt in comparison to this big and fascinating world, and I wondered what that engine would see that I would never be able to see.”
      Four RS-25 engines tested at NASA Stennis will help launch Artemis II with four astronauts to venture around the Moon. As the first crewed Artemis mission, it will represent another milestone for the nation’s human space exploration effort.
      From Interstate Signs to NASA Career
      White describes NASA Stennis as a hidden gem. Growing up in nearby Slidell, Louisiana, she had driven by the interstate signs pointing toward NASA Stennis her entire life.
      When she heard about a job opportunity at the center, she immediately applied. Initially hired as a contractor with only a high school diploma in February 2008, White found her motivation among NASA’s ranks.
      “I work with very inspiring people, and it only took one person to say, ‘You should go to college’ to give me the courage to go so late in life,” she said.
      Hard But Worth It
      White began college classes in her 40s and finished at 50. She balanced a marriage, full-time job, academic studies, and household responsibilities. When she started her educational journey, her children were either toddlers or newborns. They were growing up as she stayed in school for nine years while meeting life’s challenges.
      “It was hard, but it was so worth it,” she said. “I love my job and what I do, and even though it is crazy busy, I look forward to working at NASA every single day.”
      She joined NASA officially in 2013, going from contractor to civil servant.
      Setting an Example
      White’s proudest work moment came when she brought home the NASA Early Career Achievement award and medal. It served as a tangible symbol of her success she could share with her family.
      “It was a long road from being hired as an intern, and we all made extraordinary sacrifices,” she said. “I wanted to share it with them and set a good example for my children.”
      As Artemis II prepares to carry humans back to lunar orbit for the first time in over 50 years, White takes pride knowing her work helps power humanity’s return to deep space exploration. Her work is proof that sometimes the most important journeys begin right in one’s own backyard.
      Learn More About Careers at NASA Stennis Explore More
      4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 1 week ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 3 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 4 months ago View the full article
  • Check out these Videos

×
×
  • Create New...