Members Can Post Anonymously On This Site
NASA Astronaut Don Pettit Turns the Camera on Science
-
Similar Topics
-
By NASA
A funky effect Einstein predicted, known as gravitational lensing — when a foreground galaxy magnifies more distant galaxies behind it — will soon become common when NASA’s Nancy Grace Roman Space Telescope begins science operations in 2027 and produces vast surveys of the cosmos.
This image shows a simulated observation from NASA’s Nancy Grace Roman Space Telescope with an overlay of its Wide Field Instrument’s field of view. More than 20 gravitational lenses, with examples shown at left and right, are expected to pop out in every one of Roman’s vast observations. A journal paper led by Bryce Wedig, a graduate student at Washington University in St. Louis, Missouri, estimates that of those Roman detects, about 500 from the telescope’s High-Latitude Wide-Area Survey will be suitable for dark matter studies. By examining such a large population of gravitational lenses, the researchers hope to learn a lot more about the mysterious nature of dark matter.Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI) A particular subset of gravitational lenses, known as strong lenses, is the focus of a new paper published in the Astrophysical Journal led by Bryce Wedig, a graduate student at Washington University in St. Louis. The research team has calculated that over 160,000 gravitational lenses, including hundreds suitable for this study, are expected to pop up in Roman’s vast images. Each Roman image will be 200 times larger than infrared snapshots from NASA’s Hubble Space Telescope, and its upcoming “wealth” of lenses will vastly outpace the hundreds studied by Hubble to date.
Roman will conduct three core surveys, providing expansive views of the universe. This science team’s work is based on a previous version of Roman’s now fully defined High-Latitude Wide-Area Survey. The researchers are working on a follow-up paper that will align with the final survey’s specifications to fully support the research community.
“The current sample size of these objects from other telescopes is fairly small because we’re relying on two galaxies to be lined up nearly perfectly along our line of sight,” Wedig said. “Other telescopes are either limited to a smaller field of view or less precise observations, making gravitational lenses harder to detect.”
Gravitational lenses are made up of at least two cosmic objects. In some cases, a single foreground galaxy has enough mass to act like a lens, magnifying a galaxy that is almost perfectly behind it. Light from the background galaxy curves around the foreground galaxy along more than one path, appearing in observations as warped arcs and crescents. Of the 160,000 lensed galaxies Roman may identify, the team expects to narrow that down to about 500 that are suitable for studying the structure of dark matter at scales smaller than those galaxies.
“Roman will not only significantly increase our sample size — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky,” said Tansu Daylan, the principal investigator of the science team conducting this research program. Daylan is an assistant professor and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. “Ultimately, both the alignment and the brightness of the background galaxies need to meet a certain threshold so we can characterize the dark matter within the foreground galaxies.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows how a background galaxy’s light is lensed or magnified by a massive foreground galaxy, seen at center, before reaching NASA’s Roman Space Telescope. Light from the background galaxy is distorted, curving around the foreground galaxy and appearing more than once as warped arcs and crescents. Researchers studying these objects, known as gravitational lenses, can better characterize the mass of the foreground galaxy, which offers clues about the particle nature of dark matter.Credit: NASA, Joseph Olmsted (STScI) What Is Dark Matter?
Not all mass in galaxies is made up of objects we can see, like star clusters. A significant fraction of a galaxy’s mass is made up of dark matter, so called because it doesn’t emit, reflect, or absorb light. Dark matter does, however, possess mass, and like anything else with mass, it can cause gravitational lensing.
When the gravity of a foreground galaxy bends the path of a background galaxy’s light, its light is routed onto multiple paths. “This effect produces multiple images of the background galaxy that are magnified and distorted differently,” Daylan said. These “duplicates” are a huge advantage for researchers — they allow multiple measurements of the lensing galaxy’s mass distribution, ensuring that the resulting measurement is far more precise.
Roman’s 300-megapixel camera, known as its Wide Field Instrument, will allow researchers to accurately determine the bending of the background galaxies’ light by as little as 50 milliarcseconds, which is like measuring the diameter of a human hair from the distance of more than two and a half American football fields or soccer pitches.
The amount of gravitational lensing that the background light experiences depends on the intervening mass. Less massive clumps of dark matter cause smaller distortions. As a result, if researchers are able to measure tinier amounts of bending, they can detect and characterize smaller, less massive dark matter structures — the types of structures that gradually merged over time to build up the galaxies we see today.
With Roman, the team will accumulate overwhelming statistics about the size and structures of early galaxies. “Finding gravitational lenses and being able to detect clumps of dark matter in them is a game of tiny odds. With Roman, we can cast a wide net and expect to get lucky often,” Wedig said. “We won’t see dark matter in the images — it’s invisible — but we can measure its effects.”
“Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?” Daylan added. “While some properties of dark matter are known, we essentially have no idea what makes up dark matter. Roman will help us to distinguish how dark matter is distributed on small scales and, hence, its particle nature.”
Preparations Continue
Before Roman launches, the team will also search for more candidates in observations from ESA’s (the European Space Agency’s) Euclid mission and the upcoming ground-based Vera C. Rubin Observatory in Chile, which will begin its full-scale operations in a few weeks. Once Roman’s infrared images are in hand, the researchers will combine them with complementary visible light images from Euclid, Rubin, and Hubble to maximize what’s known about these galaxies.
“We will push the limits of what we can observe, and use every gravitational lens we detect with Roman to pin down the particle nature of dark matter,” Daylan said.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Claire Blome
Space Telescope Science Institute, Baltimore, Md.
Share
Details
Last Updated Jun 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Astrophysics Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 months ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
Article 2 years ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 3 months ago View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4564 NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Monday, June 9, 2025
The image above shows the drill poised on the surface of Mars at the start of our attempt to collect sample at “Altadena” over the weekend. Now we know, from subsequent imaging and telemetry, that the drill activity was successful, allowing planning today to focus on delivering sample powder to CheMin and SAM. CheMin and SAM will give us their distinct and valuable insights into the mineralogy (CheMin) and volatiles and organic compounds (SAM) within Altadena, which are key to our continued unravelling the history of Mt. Sharp. It is always exciting to find out what each of these instruments uncovers from Martian samples.
In addition to those sample deliveries, we had three other Altadena-focused activities. We acquired ChemCam RMI of the drill hole which helps ChemCam refine their laser targeting for future LIBS analyses of the drill hole. We planned a ChemCam passive spectroscopy observation of the cuttings around the drill hole for more insight into the mineralogy of the sample. We also included a single Mastcam M100 image of the drill hole which helps us track the wind activity at the drill site and thus the stability of the cuttings ahead of planned observations with APXS and MAHLI.
The weekend activities ran faster and more efficiently than modeled so that we had power to add additional science observations into the plan. We gathered more ChemCam data from the bedrock near Altadena at the target “Bolsa Chica,” and planned two ChemCam RMI long distance mosaics on sedimentary structures within “Texoli” butte and nearby boxwork structures. We kept track of the environment around us with yet more Mastcam imaging for wind-induced changes in the “Camp Williams” area, regular RAD and REMS measurements, two DAN measurements, and Navcam dust devil imaging and cloud movies.
Explore More
4 min read Sols 4561-4562: Prepping to Drill at Altadena
Article
5 days ago
2 min read Searching for Ancient Rocks in the ‘Forlandet’ Flats
Article
5 days ago
3 min read Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
A group of students huddle around two of their classmates using virtual reality headsets to get an up-close view of a rocket during Education Day with the Lake Erie Crushers on Thursday, May 15, 2025. Credit: NASA/Chris Hartenstine NASA’s Glenn Research Center headed to the ballpark for Education Day with the Lake Erie Crushers on May 15. NASA Glenn staff showcased the science of NASA using portable wind tunnel demonstrations, virtual reality simulations, and other interactives inspired by NASA’s Artemis missions.
NASA Glenn Research Center engineers Heath Reising, far left, and Dave Saunders, far right, provide a wind tunnel demonstration to a group of aspiring STEM professionals during Education Day with the Lake Erie Crushers on Thursday, May 15, 2025.Credit: NASA/Chris Hartenstine Guests snapped photos at an “out-of-this-world” selfie station and learned how to take the first step toward a career in the aerospace or space industry through NASA’s internship programs. The mid-day game welcomed 3,575 fans, many who came from local schools on field trips for the special day.
Return to Newsletter View the full article
-
By NASA
Presenters and NASA Glenn Research Center’s Silver Snoopy Award recipients at the center on Wednesday, May 14, 2025. Left to right: Deputy Center Director Dawn Schaible, Ron Johns, Joshua Finkbeiner, Rula Coroneos, Tyler Hickman, and astronaut Randy Bresnik. Credit: NASA/Sara Lowthian-Hanna Four of NASA Glenn Research Center’s employees have received the coveted NASA Silver Snoopy Award. This award, overseen by NASA’s Space Flight Awareness program, is a special honor given to NASA employees and contractors for their outstanding achievements related to flight safety and mission success. It is the astronauts’ personal award to recognize excellence and is given to less than 1% of the workforce annually.
Deputy Center Director Dawn Schaible, joined by astronaut Randy Bresnik, presented the awards at the center in Cleveland on May 14. Bresnik was part of a crew in 2009 that delivered 30,000 pounds of essential parts and equipment to the International Space Station. He served as the commander of the space station for Expedition 53 and flight engineer for Expedition 52.
The recipients include Rula Coroneos, Joshua Finkbeiner, Tyler Hickman, and Ron Johns. Each of the honorees has played a crucial role in supporting the Artemis campaign, which will explore the Moon and prepare for human missions to Mars. The award recipients have made significant contributions to the success of the Orion spacecraft and its European Service Module and have been dedicated to the safety and success of Artemis I and upcoming Artemis missions.
Return to Newsletter View the full article
-
By NASA
At COSI’s Big Science Celebration on Sunday, May 4, 2025, a young visitor uses one of NASA Glenn Research Center’s virtual reality headsets to immerse herself in a virtual environment. Credit: NASA/Lily Hammel NASA’s Glenn Research Center joined the Center for Science and Industry (COSI) Big Science Celebration on the museum’s front lawn in Columbus, Ohio, on May 4. This event centered on science activities by STEM professionals, researchers, and experts from Central Ohio — and despite chilly, damp weather, it drew more than 20,000 visitors.
At COSI’s Big Science Celebration on Sunday, May 4, 2025, a young visitor steps out of the rain and into NASA Glenn Research Center’s booth to check out the Graphics and Visualization Lab’s augmented reality fluid flow table that allows users to virtually explore a model of the International Space Station. Credit: NASA/Lily Hammel NASA’s 10-by-80-foot tent housed a variety of information booths and hands-on demonstrations to introduce guests to the vital research being performed at the Cleveland center. Popular attractions included a mini wind tunnel and multiple augmented and virtual reality demonstrations. Visitors also engaged through tangram puzzles and a cosmic selfie station. NASA Glenn’s astronaut mascot made several appearances to the delight of young and old alike.
Return to Newsletter View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.