Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left, NASA’s SpaceX Crew-10 members Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi share a light moment during a group portrait inside the International Space Station’s Kibo laboratory module.Credit: NASA NASA and SpaceX are targeting no earlier than 12:05 p.m. EDT, Thursday, Aug. 7, for the undocking of the agency’s SpaceX Crew-10 mission from the International Space Station. Pending weather conditions, splashdown is targeted at 11:58 a.m., Friday, Aug. 8. Crew-10 will be the first mission to splash down off the California coast for NASA’s Commercial Crew Program.
      NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov are completing a five-month science expedition aboard the orbiting laboratory and will return time-sensitive research to Earth.
      Mission managers continue monitoring weather conditions in the area, as undocking of the SpaceX Dragon depends on spacecraft readiness, recovery team readiness, weather, sea states, and other factors. NASA and SpaceX will select a specific splashdown time and location closer to the Crew-10 spacecraft undocking.
      NASA’s live coverage of return and related activities will stream on NASA+, Amazon Prime, and more. Learn how to stream NASA content through a variety of platforms.
      NASA’s coverage is as follows (all times Eastern and subject to changed based on real-time operations):
      Thursday, Aug. 7
      9:45 a.m. – Hatch closure coverage begins on NASA+ and Amazon Prime.
      10:20 a.m. – Hatch closing
      11:45 a.m. – Undocking coverage begins on NASA+ and Amazon Prime.
      12:05 p.m. – Undocking
      Following the conclusion of undocking coverage, NASA will distribute audio-only discussions between Crew-10, the space station, and flight controllers during Dragon’s transit away from the orbital complex.
      Friday, Aug. 8
      10:45 a.m. – Return coverage begins on NASA+ and Amazon Prime.
      11:08 a.m. – Deorbit burn
      11:58 a.m. – Splashdown
      1:30 p.m. – Return to Earth media teleconference will stream live on the agency’s YouTube channel, with the following participants:
      Steve Stich, manager, NASA’s Commercial Crew Program Dina Contella, deputy manager, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX Kazuyoshi Kawasaki, associate director general, Space Exploration Center/Space Exploration Innovation Hub Center, JAXA To participate in the teleconference, media must contact the NASA Johnson newsroom by 5 p.m., Aug. 7, at: jsccommu@mail.nasa.gov or 281-483-5111. To ask questions, media must dial in no later than 10 minutes before the start of the call. The agency’s media credentialing policy is available online.
      Find full mission coverage, NASA’s commercial crew blog, and more information about the Crew-10 mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Aug 06, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      Captured at a location called “Falbreen,” this enhanced-color mosaic features decep-tively blue skies and the 43rd rock abrasion (the white patch at center-left) of the NASA Perseverance rover’s mission at Mars. The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS In this natural-color version of the “Falbreen” panorama, colors have not been enhanced and the sky appears more reddish. Visible still is Perseverance’s 43rd rock abrasion (the white patch at center-left). The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS ‘Float rocks,’ sand ripples, and vast distances are among the sights to see in the latest high-resolution panorama by the six-wheeled scientist.
      The imaging team of NASA’s Perseverance Mars rover took advantage of clear skies on the Red Planet to capture one of the sharpest panoramas of its mission so far. Visible in the mosaic, which was stitched together from 96 images taken at a location the science team calls “Falbreen,” are a rock that appears to lie on top of a sand ripple, a boundary line between two geologic units, and hills as distant as 40 miles (65 kilometers) away. The enhanced-color version shows the Martian sky to be remarkably clear and deceptively blue, while in the natural-color version, it’s reddish.
      “Our bold push for human space exploration will send astronauts back to the Moon,” said Sean Duffy, acting NASA administrator. “Stunning vistas like that of Falbreen, captured by our Perseverance rover, are just a glimpse of what we’ll soon witness with our own eyes. NASA’s groundbreaking missions, starting with Artemis, will propel our unstoppable journey to take human space exploration to the Martian surface. NASA is continuing to get bolder and stronger.”
      The rover’s Mastcam-Z instrument captured the images on May 26, 2025, the 1,516th Martian day, or sol, of Perseverance’s mission, which began in February 2021 on the floor of Jezero Crater. Perseverance reached the top of the crater rim late last year.
      “The relatively dust-free skies provide a clear view of the surrounding terrain,” said Jim Bell, Mastcam-Z’s principal investigator at Arizona State University in Tempe. “And in this particular mosaic, we have enhanced the color contrast, which accentuates the differences in the terrain and sky.”
      Buoyant Boulder
      One detail that caught the science team’s attention is a large rock that appears to sit atop a dark, crescent-shaped sand ripple to the right of the mosaic’s center, about 14 feet (4.4 meters) from the rover. Geologists call this type of rock a “float rock” because it was more than likely formed someplace else and transported to its current location. Whether this one arrived by a landslide, water, or wind is unknown, but the science team suspects it got here before the sand ripple formed.
      The bright white circle just left of center and near the bottom of the image is an abrasion patch. This is the 43rd rock Perseverance has abraded since it landed on Mars. Two inches (5 centimeters) wide, the shallow patch is made with the rover’s drill and enables the science team to see what’s beneath the weathered, dusty surface of a rock before deciding to drill a core sample that would be stored in one of the mission’s titanium sample tubes.
      The rover made this abrasion on May 22 and performed proximity science (a detailed analysis of Martian rocks and soil) with its arm-mounted instruments two days later. The science team wanted to learn about Falbreen because it’s situated within what may be some of the oldest terrain Perseverance has ever explored — perhaps even older than Jezero Crater.
      Tracks from the rover’s journey to the location can be seen toward the mosaic’s right edge. About 300 feet (90 meters) away, they veer to the left, disappearing from sight at a previous geologic stop the science team calls “Kenmore.”
      A little more than halfway up the mosaic, sweeping from one edge to the other, is the transition from lighter-toned to darker-toned rocks. This is the boundary line, or contact, between two geologic units. The flat, lighter-colored rocks nearer to the rover are rich in the mineral olivine, while the darker rocks farther away are believed to be much older clay-bearing rocks.
      More About Perseverance
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover on behalf of NASA’s Science Mission Directorate in Washington, as part of NASA’s Mars Exploration Program portfolio. Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-100
      Explore More
      4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
      Article 10 minutes ago 5 min read NASA’s Lunar Trailblazer Moon Mission Ends
      Article 2 days ago 5 min read Marking 13 Years on Mars, NASA’s Curiosity Picks Up New Skills
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Astronaut Barry “Butch” WilmoreNASA/Aubrey Gemignani
      After 25 years at NASA, flying in four different spacecraft, accumulating 464 days in space, astronaut and test pilot Butch Wilmore has retired from NASA.
      The Tennessee native earned a bachelor’s and a master’s degree in electrical engineering from Tennessee Technological University and a master’s degree in aviation systems from the University of Tennessee.
      Wilmoreis a decorated U.S. Navy captain who has flown numerous tactical aircraft operationally while deploying aboard four aircraft carriers during peacetime and combat operations. A graduate of the U.S. Naval Test Pilot School, he went on to serve as a test pilot before NASA selected him to become an astronaut in 2000.
      “Butch’s commitment to NASA’s mission and dedication to human space exploration is truly exemplary,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “His lasting legacy of fortitude will continue to impact and inspire the Johnson workforce, future explorers, and the nation for generations. On behalf of NASA’s Johnson Space Center, we thank Butch for his service.”
      During his time at NASA, Wilmore completed three missions launching aboard the space shuttle Atlantis, Roscosmos Soyuz, and Boeing Starliner to the International Space Station. Wilmore also returned to Earth aboard a SpaceX Dragon spacecraft. Additionally, he conducted five spacewalks, totaling 32 hours outside the orbital laboratory.  
      “Throughout his career, Butch has exemplified the technical excellence of what is required of an astronaut. His mastery of complex systems, coupled with his adaptability and steadfast commitment to NASA’s mission, has inspired us all,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “As he steps into this new chapter, that same dedication will no doubt continue to show in whatever he decides to do next.”
      Most recently, Wilmore launched aboard Boeing’s Starliner spacecraft on June 5, 2024, for its first crewed flight test mission, arriving at the space station the following day. While aboard the station, Wilmore completed numerous tasks, including a spacewalk to help remove a radio frequency group antenna assembly from the station’s truss and collected samples and surface material for analysis from the Destiny laboratory and the Quest airlock.
      “From my earliest days, I have been captivated by the marvels of creation, looking upward with an insatiable curiosity. This curiosity propelled me into the skies, and eventually to space, where the magnificence of the cosmos mirrored the glory of its creator in ways words can scarcely convey,” said Wilmore. “Even as I ventured beyond Earth’s limits, I remained attuned to the beauty and significance of the world below, recognizing the same intricate design evident among the stars is also woven into the fabric of life at home.”
      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      Courtney Beasley
      Johnson Space Center, Houston
      281-910-4989
      courtney.m.beasley@nasa.gov

      View the full article
    • By European Space Agency
      ESA’s Hera mission has captured images of asteroids (1126) Otero and (18805) Kellyday. Though distant and faint, the early observations serve as both a successful instrument test and a demonstration of agile spacecraft operations that could prove useful for planetary defence.
      Hera is currently travelling through space on its way to a binary asteroid system. In 2022, NASA’s DART spacecraft impacted the asteroid Dimorphos, changing its orbit around the larger asteroid Didymos. Now, Hera is returning to the system to help turn asteroid deflection into a reliable technique for planetary defence.
      View the full article
    • By NASA
      7 Min Read NASA’s SpaceX Crew-10 Looks Back at Science Mission
      NASA’s SpaceX Crew-10 Looks Back at Science Mission
      NASA’s SpaceX Crew-10 mission with agency astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov is preparing to return to Earth in early August after a long-duration mission aboard the International Space Station. During their stay, McClain, Ayers, and Onishi completed dozens of experiments and technology demonstrations, helping push the boundaries of scientific discovery aboard the orbiting laboratory.
      Here’s a look at some scientific milestones accomplished during the Crew-10 mission:
      Orbital effects on plants
      NASA The canisters floating in the cupola of the International Space Station contain wild-type and genetically-modified thale cress plants for the Rhodium Plant LIFE experiment. The investigation studies how radiation and gravity environments at different orbital altitudes affect plant growth by comparing Crew-10 data with plants flown aboard the Polaris Dawn mission, which flew deeper into space. Studies have shown microgravity affects growth rates, and a better understanding of the mechanisms behind this could improve plant growth techniques in space and on Earth.
      Solar spacewalk
      NASA NASA astronaut Anne McClain conducts a spacewalk to upgrade the International Space Station’s power generation systems, which include main solar arrays like the one visible behind her. McClain is installing hardware to support an IROSA (International Space Station Roll-Out Solar Array), a type of array that is more compact and produces more power than the station’s original ones. The IROSAs were first demonstrated aboard the orbiting laboratory in June 2017, and eight have been installed to augment the power available for scientific research and other activities.
      Microalgae on the menu
      NASA NASA astronaut Nichole Ayers uses the International Space Station’s Space Automated Bioproduct Laboratory to process samples for SOPHONSTER, a study of microgravity’s effects on the protein yield of microalgae. These organisms are highly nutritious, producing amino acids, fatty acids, B vitamins, iron, and fiber. The microalgae could provide sustainable meat and dairy alternatives during long-duration space missions. It also could be used to make biofuels and bioactive compounds in medicines in space and on Earth.
      Looking down on lightning
      NASA The International Space Station orbits more than 250 miles above Earth, giving astronauts a unique view of their home planet, where they can photograph familiar places and interesting phenomena. While passing over a stormy night, NASA astronaut Nichole Ayers captured this image of simultaneous lightning at the top of two thunderstorms. Scientists use instruments installed on the space station to study lightning and other weather conditions in Earth’s upper atmosphere. This research helps protect communication systems and aircraft while improving atmospheric models and weather predictions.
      Testing the tips of DNA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA In this time-lapse video, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and NASA astronaut Nichole Ayers harvest samples for the APEX-12 investigation, which examines how space radiation affects telomere activity in thale cress plants. Telomeres, which are repetitive DNA sequences that protect the ends of chromosomes, become shorter each time a cell divides and indicate cell aging. The APEX-12 investigation could clarify the role of telomeres in aging and diseases and help scientists equip plants and other organisms for the stress of long-duration spaceflight.
      Microscopic motion
      NASA A fluorescent microscope, known as ELVIS, captures the motion of microscopic algae and bacteria in 3D, a new capability aboard the International Space Station. The technology could be helpful in various applications in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms. NASA astronaut Anne McClain prepares bacterial samples for viewing with the microscope.
      How cells sense gravity
      NASA Individual cells in our bodies can respond to the effects of gravity, but how they do this is largely unknown. The Cell Gravisensing investigation is an effort to observe the mechanism that enables cells to sense gravity and could lead to therapies to treat muscle and bone conditions, like muscle atrophy during long-duration spaceflight and osteoporosis on Earth. JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi processes research samples in the International Space Station’s Kibo laboratory module.
      Water works
      NASA NASA astronauts Nichole Ayers and Anne McClain work on installing hardware for the International Space Station’s Exploration Potable Water Dispenser. Scientists are evaluating the device’s water sanitization and microbial growth reduction technology. The dispenser provides room temperature and hot water for crew consumption and food preparation. This technology could be adopted for future exploration missions.
      Free-flying camera
      NASA Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) monitors the JEM Internal Ball Camera 2 as it floats through the International Space Station. The free-flying, rechargeable camera provides a visual field outside the other cameras installed aboard the space station. JAXA is testing the robot’s ability to capture video and imagery of scientific experiments and other activities, which could free up crew time for research and other duties.
      Two rings to pin them all
      NASA NASA astronaut Nichole Ayers sets up the space station’s Ring Sheared Drop device, which uses surface tension to pin a drop of liquid between two rings. The device makes it possible to study liquid proteins without a solid container, eliminating interactions between the solutions and container walls that can affect results. The Ring Sheared Drop-IBP-2 experiment studies the behavior of protein fluids in microgravity and tests predictive computer models. Better models could help advance manufacturing processes in space and on Earth for next-generation medicines to treat cancers and other diseases.
      Crystallization research
      NASA NASA astronaut Anne McClain swaps out hardware in the International Space Station’s Advanced Space Experiment Processor-4, which enables physical science and crystallization research. A current investigation uses the processor to demonstrate technology that may be able to produce medications during deep space missions and improve pharmaceutical manufacturing on Earth.
      Monitoring astronaut health
      NASA NASA astronaut Anne McClain helps JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi collect a sample of his blood. Analysis of blood samples is one tool NASA uses to continuously monitor crew health, including cardiovascular and immune system functions, bone and muscle mass changes, nutritional and metabolic status, and mental well-being. Crew members aboard the International Space Station also participate in various ongoing studies to better understand how different body systems adapt to weightlessness.
      Catching a corona
      NASA/KASI/INAF/CODEX This animated, color-coded heat map shows temperature changes in the Sun’s outer atmosphere, or corona, over several days, with red indicating hotter regions and purple showing cooler ones. Scientists can observe these changes thanks to the International Space Station’s CODEX, which collected data during the Crew-10 mission. The instrument uses a coronagraph to block out sunlight and reveal details in the Sun’s corona. Data from this investigation could help scientists understand the energy source of the solar wind, a flow of charged particles from the Sun that constantly bombards Earth.
      Expanding in-space crystallization
      NASA Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) services the International Space Station’s Advanced Space Experiment Processor-4 in preparation for ADSEP-Industrial Crystallization Cassette. This investigation tests new hardware that scales up research and could enable in-space production of pharmaceuticals and other materials for commercial space applications.
      Sowing seeds in space
      NASA NASA astronaut Nichole Ayers prepares mixture tubes containing samples for Nanoracks Module-9 Swiss Chard. This student-designed experiment examines whether the size, shape, color, and nutritional content of Swiss chard seeds germinated in space differ from those grown on Earth. The International Space Station hosts ongoing plant research as a source of food and other benefits, including contributing to astronaut well-being, for future long-duration missions.
      Protecting astronaut vision
      NASA Spaceflight can cause changes to eye structure and vision, so crew members monitor eye health throughout their missions. Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), assisted by NASA astronaut Nichole Ayers, conducts an eye exam aboard the International Space Station using optical coherence tomography. This technology uses reflected light to produce 3D images of the retina, nerve fibers, and other eye structures and layers.
      Share
      Details
      Last Updated Aug 05, 2025 Related Terms
      ISS Research Humans in Space International Space Station (ISS) Explore More
      7 min read NICER Status Updates
      Article 4 hours ago 1 min read NASA Invites Virtual Guests to SpaceX Crew-11 Mission Launch
      Article 2 weeks ago 4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Humans In Space
      International Space Station
      View the full article
  • Check out these Videos

×
×
  • Create New...