Members Can Post Anonymously On This Site
Michael Ciancone Builds a Lasting Legacy in Human Spaceflight
-
Similar Topics
-
By NASA
CSA (Canadian Space Agency) astronaut Jeremy Hansen, alongside NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch, will launch on the Artemis II mission early next year. The crew will participate in human research studies to provide insights about how the body performs in deep space as part of this mission. Credit: (NASA/James Blair) A sweeping collection of astronaut health studies planned for NASA’s Artemis II mission around the Moon will soon provide agency researchers with a glimpse into how deep space travel influences the human body, mind, and behavior.
During an approximately 10-day mission set to launch in 2026, NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will collect and store their saliva, don wrist monitors that track movement and sleep, and offer other essential data for NASA’s Human Research Program and other agency science teams.
“The findings are expected to provide vital insights for future missions to destinations beyond low Earth orbit, including Mars,” said Laurie Abadie, an aerospace engineer for the program at NASA’s Johnson Space Center in Houston, who strategizes about how to carry out studies on Artemis missions. “The lessons we learn from this crew will help us to more safely accomplish deep space missions and research,” she said.
One study on the Artemis II mission, titled Immune Biomarkers, will explore how the immune system reacts to spaceflight. Another study, ARCHeR (Artemis Research for Crew Health and Readiness), will evaluate how crew members perform individually and as a team throughout the mission, including how easily they can move around within the confined space of their Orion spacecraft. Astronauts also will collect a standardized set of measurements spanning multiple physiological systems to provide a comprehensive snapshot of how spaceflight affects the human body as part of a third study called Artemis II Standard Measures. What’s more, radiation sensors placed inside the Orion capsule cells will collect additional information about radiation shielding functionality and organ-on-a-chip devices containing astronaut cells will study how deep space travel affects humans at a cellular level.
“Artemis missions present unique opportunities, and challenges, for scientific research,” said Steven Platts, chief scientist for human research at NASA Johnson.
Platts explained the mission will need to protect against challenges including exposure to higher radiation levels than on the International Space Station, since the crew will be farther from Earth.
“Together, these studies will allow scientists to better understand how the immune system performs in deep space, teach us more about astronauts’ overall well-being ahead of a Mars mission, and help scientists develop ways to ensure the health and success of crew members,” he said.
Another challenge is the relatively small quarters. The habitable volume inside Orion is about the size of a studio apartment, whereas the space station is larger than a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. That limitation affects everything from exercise equipment selection to how to store saliva samples.
Previous research has shown that spaceflight missions can weaken the immune system, reactivate dormant viruses in astronauts, and put the health of the crew at risk. Saliva samples from space-based missions have enabled scientists to assess various viruses, hormones, and proteins that reveal how well the immune system works throughout the mission.
But refrigeration to store such samples will not be an option on this mission due to limited space. Instead, for the Immune Biomarkers study, crew members will supply liquid saliva on Earth and dry saliva samples in space and on Earth to assess changes over time. The dry sample process involves blotting saliva onto special paper that’s stored in pocket-sized booklets.
“We store the samples in dry conditions before rehydrating and reconstituting them,” said Brian Crucian, an immunologist with NASA Johnson who’s leading the study. After landing, those samples will be analyzed by agency researchers.
For the ARCHeR study, participating crew members will wear movement and sleep monitors, called actigraphy devices, before, during, and after the mission. The monitors will enable crew members and flight controllers in mission control to study real-time health and behavioral information for crew safety, and help scientists study how crew members’ sleep and activity patterns affect overall health and performance. Other data related to cognition, behavior, and team dynamics will also be gathered before and after the mission.
“Artemis missions will be the farthest NASA astronauts have ventured into space since the Apollo era,” said Suzanne Bell, a NASA psychologist based at Johnson who is leading the investigation. “The study will help clarify key mission challenges, how astronauts work as a team and with mission control, and the usability of the new space vehicle system.”
Another human research study, Artemis II Standard Measures, will involve collecting survey and biological data before, during, and after the Artemis II mission, though blood collection will only occur before and after the mission. Collecting dry saliva samples, conducting psychological assessments, and testing head, eye, and body movements will also be part of the work. In addition, tasks will include exiting a capsule and conducting simulated moonwalk activities in a pressurized spacesuit shortly after return to Earth to investigate how quickly astronauts recover their sense of balance following a mission.
Crew members will provide data for these Artemis II health studies beginning about six months before the mission and extending for about a month after they return to Earth.
NASA also plans to use the Artemis II mission to help scientists characterize the radiation environment in deep space. Several CubeSats, shoe-box sized satellites that will be deployed into high-Earth orbit during Orion’s transit to the Moon, will probe the near-Earth and deep space radiation environment. Data gathered by these CubeSats will help scientists understand how best to shield crew and equipment from harmful space radiation at various distances from Earth.
Crew members will also keep dosimeters in their pockets that measure radiation exposure in real time. Two additional radiation-sensing technologies will also be affixed to the inside of the Orion spacecraft. One type of device will monitor the radiation environment at different shielding locations and alert crew if they need to seek shelter, such as during a solar storm. A separate collection of four radiation monitors, enabled through a partnership with the German Space Agency DLR, will be placed at various points around the cabin by the crew after launch to gather further information.
Other technologies also positioned inside the spacecraft will gather information about the potential biological effects of the deep space radiation environment. These will include devices called organ chips that house human cells derived from the Artemis II astronauts, through a project called AVATAR (A Virtual Astronaut Tissue Analog Response). After the Artemis II lands, scientists will analyze how these organ chips responded to deep space radiation and microgravity on a cellular level.
Together, the insights from all the human research science collected through this mission will help keep future crews safe as humanity extends missions to the Moon and ventures onward to Mars.
____
NASA’s Human Research Program
NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, the International Space Station and Artemis missions, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives the program’s quest to innovate ways that keep astronauts healthy and mission ready as human space exploration expands to the Moon, Mars, and beyond.
Explore More
9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
Article 20 hours ago 5 min read NASA’s Northrop Grumman CRS-23 Infographics & Hardware
Article 20 hours ago 4 min read NASA Uses Colorado Mountains for Simulated Artemis Moon Landing Course
Article 2 days ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
By NASA
A child of the Space Shuttle Program, Jeni Morrison grew up walking the grounds of NASA’s Johnson Space Center in Houston with her parents and listening to family stories about human spaceflight.
Now, with more than 15 years at NASA, Morrison serves as one of Johnson’s Environmental Programs managers. She ensures the center complies with laws that protect its resources by overseeing regulatory compliance for cultural and natural resources, stormwater and drinking water programs, and the National Environmental Policy Act. She also safeguards Johnson’s historic legacy as Johnson’s Cultural Resources manager.
Jeni Morrison in the mall area at NASA’s Johnson Space Center in Houston, where employees often see local wildlife, including turtles, birds, deer, and the occasional alligator. “I make sure our actions comply with the National Historic Preservation act, since the center is considered a historic district with two National Historic Landmarks onsite,” Morrison said. “I make sure we respect and document Johnson’s heritage while paving the way for new efforts and mission objectives.”
Morrison takes pride in finding solutions that increase efficiency while protecting resources. One example was a project with Johnson’s Geographic Information System team to create an interactive material and chemical spill plan map. The new system helps responders quickly trace spill paths above and underground to deploy resources faster, reducing cleanup costs and minimizing environmental impacts.
“Every improvement we make not only saves time and resources, but strengthens our ability to support NASA’s mission,” she said.
By the very nature of our work, NASA makes history all the time. That history is important for all people, both to remember the sacrifices and accomplishments of so many, but also to ensure we don’t repeat mistakes as we strive for even bolder achievements.
Jeni Morrison
Environmental Program Manager
Jeni Morrison presents an overview of environmental compliance and center initiatives to employees at NASA’s Johnson Space Center in 2014. NASA/Lauren Harnett For Morrison, success often comes down to teamwork. She has learned to adapt her style to colleagues’ needs to strengthen collaboration.
“By making the effort to accommodate others’ communication styles and learn from different perspectives, we create better, more efficient work,” she said. “Thankfully, so many people here at NASA are willing to teach and to share their experiences.”
Her message to the Artemis Generation is simple: Always keep learning!
“You never know when a side conversation could give you an answer to a problem you are facing down the line,” she said. “You must be willing to ask questions and learn something new to find those connections.”
Jeni Morrison (second from right) with the Biobased Coolant Project Team at NASA’s Johnson Space Center in 2018. The team tested biobased metalworking coolants and identified a product that outperformed petroleum-based options, meeting flight hardware specifications while reducing waste disposal costs and labor hours. Even as a young child visiting NASA Johnson, I could feel the sense of adventure, accomplishment, and the drive to reach new heights of human capability. I realize that those experiences gave me a fascination with learning and an inherent need to find ways to do things better.
jENI mORRISON
Environmental Program Manager
Her passion for learning and discovery connects to a family tradition at NASA. Her grandfather contributed to multiple Apollo missions, including helping solve the oxygen tank malfunction on Apollo 13. Her mother worked at the center transcribing astronaut recordings and writing proposals, and her father flew experiments aboard the space shuttle and International Space Station. Morrison’s sister and extended family also worked at Johnson.
Now her son is growing up on the center grounds while attending the JSC Child Care Center. “As the fourth generation to be at Johnson, he is already talking about how he loves science and can’t wait to do his own experiments,” she said.
For Morrison, carrying that family legacy forward through environmental stewardship is a privilege. “Being able to contribute to NASA’s mission through environmental compliance feels like the best of both worlds for me,” Morrison said. “It combines my love of science and NASA with my drive to find more efficient ways to operate while protecting this incredible site and everything it represents.”
Explore More
4 min read Mark Cavanaugh: Integrating Safety into the Orion Spacecraft
Article 1 month ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead
Article 5 months ago 5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
Article 3 months ago
View the full article
-
By NASA
NASA’s Human Lander Challenge (HuLC) is an initiative supporting its Exploration Systems Development Mission Directorate’s (ESDMD’s) efforts to explore innovative solutions for a variety of known technology development areas for human landing systems (HLS). Landers are used to safely ferry astronauts to and from the lunar surface as part of the mission architecture for NASA’s Artemis campaign. Through this challenge, college students contribute to the advancement of HLS technologies, concepts, and approaches. Improvements in these technology areas have the potential to revolutionize NASA’s approach to space exploration, and contributions from the academic community are a valuable part of the journey to discovery. HuLC is open to teams comprised of full-time or part-time undergraduate and/or graduate students at an accredited U.S.-based community college, college, or university. HuLC projects allow students to incorporate their coursework into real aerospace design concepts and work together in a team environment. Interdisciplinary teams are encouraged.
Award: $126,000 in total prizes
Open Date: August 29, 2025
Close Date: March 4, 2026
For more information, visit: https://hulc.nianet.org/
View the full article
-
By NASA
Lydia Rodriguez is an office administrator in the Flight Operations Directorate’s Operations Division and Operations Tools and Procedures Branch at NASA’s Johnson Space Center in Houston.
Over nearly two decades, she has supported nine organizations, helping enable NASA’s missions and forming lasting relationships along the way.
Official portrait of Lydia Rodriguez. NASA/Devin Boldt “I’ve had the opportunity to meet many different people at NASA who have become like family,” Rodriguez said. “I enjoy the culture and building relationships with people from all walks of life. I have learned so much from each person I’ve met and worked alongside.”
Her path to NASA began in high school, when her parents encouraged her to apply for a part-time Office Education student position at Johnson. That early opportunity gave her a glimpse into the agency’s culture — one that would inspire her to stay.
Lydia Rodriguez in the Mission Control Center Viewing Room during the Expedition 72 plaque hanging ceremony at NASA’s Johnson Space Center in Houston. Rodriguez takes pride in the practical support she has provided to her colleagues. She spent years in the Engineering Travel Office, helping team members plan their travel around the world. In 2013, the team was honored with a Group Achievement Award.
“I am proud of being confident and able to help others with their bookings and questions,” Rodriguez said.
Her NASA career has also taught her important lessons. Change has been a constant since she joined the center in 2008, and she has learned to adapt.
One of the greatest challenges came after Hurricane Harvey in 2017, when her home was flooded. Rodriguez learned to ask for support and leaned on employee resources at Johnson.
“I’ve learned that I am a resilient individual who takes on new challenges often,” she said. “What has helped me overcome obstacles is focusing on the mission and showing compassion toward people. We are all here for a reason and a purpose, and together we can accomplish greater things.”
Lydia Rodriguez skydiving for the second time in Houston. To the Artemis Generation, Rodriguez hopes to pass on the excitement of being part of the next frontier of space exploration.
“Take full advantage of the opportunities and resources available,” she said. “Meet new people, ask for help, never stop learning, growing, and contributing your experiences. Hopefully it will inspire others to do the same.”
Explore More
3 min read Inside NASA’s New Orion Mission Evaluation Room for Artemis II
Article 7 days ago 3 min read Lindy Garay: Supporting Space Station Safety and Success
Article 1 week ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
Article 2 weeks ago View the full article
-
By NASA
Credit: NASA NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.
The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.
Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.
For more information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
Johnson Space Center Artemis Commercial Crew International Space Station (ISS) ISS Research Johnson Flight Operations Space Launch System (SLS) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.