Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4507-4508: “Just Keep Driving”

NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager
NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC.
NASA/JPL-Caltech/MSSS

Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems

Earth planning date: Wednesday, April 9, 2025

Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).

Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 

ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings
      NASA’s Mars rover Curiosity acquired this image of the “Altadena” drill hole using its Mast Camera (Mastcam) on June 8, 2025 — Sol 4564, or Martian day 4,564 of the Mars Science Laboratory mission — at 13:57:45 UTC. NASA/JPL-Caltech/MSSS Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Wednesday, June 11, 2025
      As we near the end of our Altadena drill campaign, Curiosity continued her exploration of the Martian bedrock within the boxwork structures on Mount Sharp. After successfully delivering a powdered rock sample to both the CheMin (Chemistry and Mineralogy) and SAM (Sample Analysis at Mars) instruments, the focus for sols 4568 and 4569 was to take a closer look at the drill hole itself — specifically, the interior walls of the drill hole and the associated tailings (the rock material pushed out by the drill).
      In the image above, you can see that the tone (or color) of the rock exposed within the wall of the drill hole appears to change slightly with depth, and the drill tailings are a mixture of fine powder and more solid clumps. If you compare the Altadena drill site with the 42 drill sites that came before, one can really appreciate the impressive range of colors, textures, and grain sizes in the rocks that Curiosity has analyzed over the past 12 years. Every drill hole marks a window into the past and can help us understand how the ancient environment and climate on Mars evolved over time.
       In this two-sol plan, the ChemCam, Mastcam, APXS, and MAHLI instruments coordinated their observations to image and characterize the chemistry of the wall of the drill hole and tailings before we drive away from this site over the coming weekend. Outside of our immediate workspace, Mastcam created two stereo mosaics that will image the boxwork structures nearby as well as the layers within Texoli butte. ChemCam assembled three long-distance RMI images that will help assess the layers at the base of the “Mishe Mokwa” hill, complete the imaging of the nearby boxwork structures, and image the very distant crater rim (about 90 kilometers, or 56 miles away) and sky to investigate the scattering properties of the atmosphere. The environmental theme group included observations that will measure the properties of the atmosphere and also included a dust-devil survey.
      Share








      Details
      Last Updated Jun 13, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4566-4567: Drilling Success


      Article


      2 days ago
      4 min read Curiosity Blog, Sols 4563-4565: Doing What We Do Best


      Article


      5 days ago
      4 min read Sols 4561-4562: Prepping to Drill at Altadena


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation
      White diamonds show the locations of 20 of the 83 young, low-mass, starburst galaxies found in infrared images of the giant galaxy cluster Abell 2744. Full image and description shown below. Credits:
      NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 Astronomers using data from NASA’s James Webb Space Telescope have identified dozens of small galaxies that played a starring role in a cosmic makeover that transformed the early universe into the one we know today.
      “When it comes to producing ultraviolet light, these small galaxies punch well above their weight,” said Isak Wold, an assistant research scientist at Catholic University of America in Washington and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Our analysis of these tiny but mighty galaxies is 10 times more sensitive than previous studies, and shows they existed in sufficient numbers and packed enough ultraviolet power to drive this cosmic renovation.”
      Wold discussed his findings Wednesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska. The study took advantage of existing imaging collected by Webb’s NIRCam (Near-Infrared Camera) instrument, as well as new observations made with its NIRSpec (Near-Infrared Spectrograph) instrument.
      Image A: Webb search finds dozens of tiny, young star-forming galaxies
      Symbols mark the locations of young, low-mass galaxies bursting with new stars when the universe was about 800 million years old. Using a filter sensitive to such galaxies, NASA’s James Webb Space Telescope imaged them with the help of a natural gravitational lens created by the massive galaxy cluster Abell 2744. In all, 83 young galaxies were found, but only the 20 shown here (white diamonds) were selected for deeper study. The inset zooms into one of the galaxies.
      Download high-resolution images from NASA’s Scientific Visualization Studio NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 The tiny galaxies were discovered by Wold and his Goddard colleagues, Sangeeta Malhotra and James Rhoads, by sifting through Webb images captured as part of the UNCOVER (Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization) observing program, led by Rachel Bezanson at the University of Pittsburgh in Pennsylvania.
      The project mapped a giant galaxy cluster known as Abell 2744, nicknamed Pandora’s cluster, located about 4 billion light-years away in the southern constellation Sculptor. The cluster’s mass forms a gravitational lens that magnifies distant sources, adding to Webb’s already considerable reach.
      Image B: Galaxy cluster helps reveal young, low-mass galaxies bursting with stars
      White diamonds show the locations of 20 of the 83 young, low-mass, starburst galaxies found in infrared images of the giant galaxy cluster Abell 2744. This composite incorporates images taken through three NIRCam filters (F200W as blue, F410M as green, and F444W as red). The F410M filter is highly sensitive to light emitted by doubly ionized oxygen — oxygen atoms that have been stripped of two electrons — at a time when reionization was well underway. Emitted as green light, the glow was stretched into the infrared as it traversed the expanding universe over billions of years. The cluster’s mass acts as a natural magnifying glass, allowing astronomers to see these tiny galaxies as they were when the universe was about 800 million years old. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 For much of its first billion years, the universe was immersed in a fog of neutral hydrogen gas. Today, this gas is ionized — stripped of its electrons. Astronomers, who refer to this transformation as reionization, have long wondered which types of objects were most responsible: big galaxies, small galaxies, or supermassive black holes in active galaxies. As one of its main goals, NASA’s Webb was specifically designed to address key questions about this major transition in the history of the universe.
      Recent studies have shown that small galaxies undergoing vigorous star formation could have played an outsized role. Such galaxies are rare today, making up only about 1% of those around us. But they were abundant when the universe was about 800 million years old, an epoch astronomers refer to as redshift 7, when reionization was well underway.
      The team searched for small galaxies of the right cosmic age that showed signs of extreme star formation, called starbursts, in NIRCam images of the cluster.
      “Low-mass galaxies gather less neutral hydrogen gas around them, which makes it easier for ionizing ultraviolet light to escape,” Rhoads said. “Likewise, starburst episodes not only produce plentiful ultraviolet light — they also carve channels into a galaxy’s interstellar matter that helps this light break out.”
      Image C: A deeper look into small, young, star-forming galaxies during reionization
      At left is an enlarged infrared view of galaxy cluster Abell 2744 with three young, star-forming galaxies highlighted by green diamonds. The center column shows close-ups of each galaxy, along with their designations, the amount of magnification provided by the cluster’s gravitational lens, their redshifts (shown as z — all correspond to a cosmic age of about 790 million years), and their estimated mass of stars. At right, measurements from NASA’s James Webb Space Telescope’s NIRSpec instrument confirm that the galaxies produce strong emission in the light of doubly ionized oxygen (green bars), indicating vigorous star formation is taking place. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 The astronomers looked for strong sources of a specific wavelength of light that signifies the presence of high-energy processes: a green line emitted by oxygen atoms that have lost two electrons. Originally emitted as visible light in the early cosmos, the green glow from doubly ionized oxygen was stretched into the infrared as it traversed the expanding universe and eventually reached Webb’s instruments.   
      This technique revealed 83 small starburst galaxies as they appear when the universe was 800 million years old, or about 6% of its current age of 13.8 billion years. The team selected 20 of these for deeper inspection using NIRSpec.
      “These galaxies are so small that, to build the equivalent stellar mass of our own Milky Way galaxy, you’d need from 2,000 to 200,000 of them,” Malhotra said. “But we are able to detect them because of our novel sample selection technique combined with gravitational lensing.”
      Image D: Tiny but mighty galaxy helped clear cosmic fog
      One of the most interesting galaxies of the study, dubbed 41028 (the green oval at center), has an estimated stellar mass of just 2 million Suns — comparable to the masses of the largest star clusters in our own Milky Way galaxy. NASA/ESA/CSA/Bezanson et al. 2024 and Wold et al. 2025 Similar types of galaxies in the present-day universe, such as green peas, release about 25% of their ionizing ultraviolet light into surrounding space. If the low-mass starburst galaxies explored by Wold and his team release a similar amount, they can account for all of the ultraviolet light needed to convert the universe’s neutral hydrogen to its ionized form.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Downloads
      Click any image above to open a larger version.
      Download high-resolution images from NASA’s Scientific Visualization Studio.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Related Information
      Article: Types of Galaxies
      Video: Different types of galaxies
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Jun 11, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Goddard Space Flight Center Science & Research The Universe View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4561-4562: Prepping to Drill at Altadena
      NASA’s Mars rover Curiosity acquired this image of a recent DRT (Dust Removal Tool) site, showing off the marks created in the rocks by DRT — a motorized, wire-bristle brush on the turret at the end of the rover’s robotic arm — as well as a whitish vein that was revealed after the dust covering it was removed. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), a camera mounted on the turret at the end of the robotic arm, which provides close-up views of the minerals, textures, and structures in Martian rocks and the surface layer of rocky debris and dust. Using an onboard process, MAHLI merges two to eight images to make a composite image of the same target acquired at different focus positions, to bring many features into focus in a single image. Curiosity merged this composite on June 4, 2025 — Sol 4560. Or Martian day 4,560 of the Mars Science Laboratory Mission — at 12:33:42 UTC. NASA/JPL-Caltech/MSSS Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Wednesday, June 4, 2025
      We are continuing to look for a suitable location to collect a drilled sample in this area. As you may recall from Monday’s plan, we performed a short “bump” of just under 4 meters (about 13 feet) hoping to find a drill target today after Monday’s analysis determined that there were no good targets in our previous workspace. Happily, today’s workspace was much more cooperative, and we were able to select the target “Altadena” as our next potential drill location. Altadena is a name that we’ve been saving for a special target, as its namesake here on Earth is a neighborhood next to JPL that was devastated by the Eaton Fire earlier this year. We’re about to enter our next mapping quadrangle, which will come with a new set of target names, so the team decided that using Altadena as the name for this drill site was an obvious choice.
      The big activity in this plan is the next step in the drilling process. This activity is the “preload test,” which determines if the forces on the drill will be good while drilling, and the drill target won’t unexpectedly move or fracture. If we pass the preload test and find that the rock has the chemistry we’re looking for, we’ll be able to proceed with Altadena as our next drill site. If we don’t, we’ll have to decide whether to bump again or resume driving deeper into this potentially boxwork-bearing region.
      Of course, the preload test isn’t the only thing we’re doing today. Coming in, it was looking like our time for other activities would be pretty tight due to power constraints imposed by preparations for drilling and keeping the rover warm during the cold Martian winter. However, we’ve recently implemented some new power-optimizing capabilities, which led to us having much more power today than we expected. This meant that we were able to add a whole additional hour of science time in addition to the hour that we already had scheduled. 
      Unsurprisingly, Altadena gets a lot of love in this plan to characterize it before we drill. This includes a ChemCam LIBS activity and a Mastcam observation, as well as some overnight observations by APXS and some MAHLI images. In addition, Mastcam will be observing some exposed stratigraphy at “Dana Point,” a light-toned vein at “Mission Trails” that will also be a ChemCam LIBS target, a few more nearby troughs, and a couple of sandy patches at “Camp Williams” to observe wind-driven sediment transport. Along with the two LIBS, ChemCam will be using its RMI camera to add to the pile of images we have of the Mishe Mokwa butte and the yardang unit off in the distance.
      As the lead for the Atmosphere and Environment (ENV) group today, it looked like I was going to have a pretty light workload due to the power constraints preventing any ENV activities other than our usual REMS, RAD, and DAN observations. With the extra hour of science time, I was able to add a handful of new activities, including three Navcam cloud movies, a Navcam line-of-sight observation of dust within Gale Crater, and a Navcam survey to look for any dust devils that may be swirling around the rover. A pretty decent ENV science haul for a plan that started with nothing!
      When we come into planning on Friday, we’ll hopefully have passed the preload test and will be able to turn Altadena into our 43rd drill hole in the coming sols, before we continue driving up the slopes of Mount Sharp.
      Share








      Details
      Last Updated Jun 06, 2025 Related Terms
      Blogs Explore More
      2 min read Searching for Ancient Rocks in the ‘Forlandet’ Flats


      Article


      1 hour ago
      3 min read Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site


      Article


      2 days ago
      2 min read Sols 4556-4558: It’s All in a Day’s (box)Work


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site
      NASA’s Mars rover Curiosity acquired this image of a portion of its workspace, full of interesting but not drillable bedrock, using its Left Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:24 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
      Earth planning date: Monday, June 2, 2025
      Now that Curiosity has spent a few sols collecting close-up measurements of the rocks in the outer edge of the boxwork-forming geologic unit, the team has decided that it’s time to collect a drill sample. The geochemical measurements by APXS and ChemCam have shown changes since we crossed over from the previous layered sulfate unit, but we can’t figure out the mineralogy from those data alone. As we’ve often seen before on Mars, the same chemical elements can crystallize into a number of different mineral assemblages. That’s even more the case in sedimentary rocks such as we are driving through, in which different grains in our rocks may have formed in different times and places. This also means that when we do get our mineral data, those minerals will tell us a lot about the history of these new-to-us rocks.
      On board Curiosity, that mineral analysis is the job of the CheMin instrument, which uses X-ray diffraction to identify minerals. CheMin shines a narrow X-ray beam through a powdered sample in order to generate the diffraction pattern, which means that it needs a drilled sample. So the team today was busy looking for a drillable spot. Unfortunately the rover’s drill reach from today’s parking spot included only rocks that were too fractured or had too much debris sitting on them to be considered likely to produce a good drilled sample, so we will have to move, or “bump,” at least one more time before progressing to the drill preload test, which is the next step in drilling. 
      In the meantime, we are taking more measurements to understand the range of compositions that can be found in this rock layer. Dust removal (DRT) + APXS + LIBS + MAHLI were all planned for target “Holcomb Valley,” while a short distance away a second DRT/APXS/MAHLI measurement was planned for “Santa Ysabel Valley” and in another direction, a second LIBS for “Stough Saddle.” One long-distance ChemCam remote imaging mosaic was planned to cover a boxwork structure off in the distance. Mastcam had a relatively light day of imaging, with just a couple of small mosaics covering a nearby trough feature, and providing context for the RMI of the boxwork structure, in addition to documenting the two LIBS targets. The modern Mars environment was also recorded with a couple of movies to look for dust-devil activity, a measurement of atmospheric opacity, and a pair of suprahorizon observations to look for clouds, plus the usual passive observations by DAN and REMS to monitor the neutron environment, temperature, and humidity.
      I’ll be on rover planning Wednesday as Geology and Mineralogy Science Theme Lead and looking forward to what we find — hopefully some drillable boxwork-unit bedrock!
      Share








      Details
      Last Updated Jun 04, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4556-4558: It’s All in a Day’s (box)Work


      Article


      1 day ago
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      6 days ago
      2 min read Sol 4553: Back to the Boxwork!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4556-4558: It’s All in a Day’s (box)Work
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:56 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Friday, May 30, 2025
      When you are scheduled to participate in Science Operations for the rover’s weekend plan, you know it’s going to be a busy morning! Assembling the activities for Friday through Sunday (Sols 4556 through 4558) was no exception. I participated on this shift as the “keeper of the plan” for the geology and mineralogy theme group where I worked with members of the science and instrument teams to compile a set of observations for the rover to complete over the weekend. The rover continues to drive over a surface of shallow, sometimes sand-filled depressions that are separated by raised ridges — informally known as the “boxwork structures.” On this Friday, we were tasked with assessing the ground in our immediate vicinity to determine if the low-lying bedrock in the hollows was suitable for drilling.
      With a focus on packing the plan with remote sensing activities to understand the bedrock around us, we used the ChemCam laser to analyze the chemistry of two bedrock targets, “La Tuna Canyon” and “Cooper Canyon,” that were also documented by Mastcam. ChemCam and Mastcam also teamed up to image an interesting dark ridge nearby named “Encinal Canyon.” Mastcam created stereo mosaics to document the nature of the candidate drill sites that were near the rover, in addition to the “Blue Sky Preserve” stereo mosaic that beautifully captured the nature of the boxwork structures in front of us. The environmental theme group included some of their favorite activities in the plan to monitor the clouds, wind, and the atmosphere.
      Curiosity has successfully completed numerous long drives (about 20+ meters, or 66 feet and beyond) in the past several weeks but this weekend the rover got a bit of a reprieve — the rover will drive approximately 7 meters (about 23 feet) to get situated in front of a possible drill site. I’m eagerly looking forward to seeing what unfolds on Monday!  
      .
      Share








      Details
      Last Updated Jun 03, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      4 days ago
      2 min read Sol 4553: Back to the Boxwork!


      Article


      5 days ago
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...