Jump to content

Recommended Posts

  • Publishers
Posted
6 Min Read

NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise

An illustration of a host star, which looks like an orange globe with flares coming out on various sides with a very transparent cloud of blue dust spread out from the star. A dark orange horizontal ring of material circles the host star.
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. Full illustration below.
Credits:
NASA, ESA, CSA, R. Crawford (STScI)

Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative surrounding what is believed to be the first star observed in the act of swallowing a planet. The new findings suggest that the star actually did not swell to envelop a planet as previously hypothesized. Instead, Webb’s observations show the planet’s orbit shrank over time, slowly bringing the planet closer to its demise until it was engulfed in full.

“Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said Ryan Lau, lead author of the new paper and astronomer at NSF NOIRLab (National Science Foundation National Optical-Infrared Astronomy Research Laboratory) in Tuscon, Arizona. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”

Two instruments aboard Webb conducted the post-mortem of the scene – Webb’s MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph). The researchers were able to come to their conclusion using a two-pronged investigative approach.

Image A: Planetary Engulfment Illustration

A four panel illustration, with two boxes on the top row and two boxes on the bottom row. They are labeled: 1, 2, 3, 4. Panel 1 shows a host star, which looks like an orange globe with flares coming out on various sides. There is a blue line with arrows forming a spiral around the star. At 2 o’clock in the outer spiral, furthest away from the star, there is a blue planet. Panel 2 shows the same star and lines, but the planet is now at 7 o’clock and closer to the star. It is a little stretched out toward the star, appearing like an American football or rugby ball instead of a sphere. Panel 3 shows the same star and lines, but the planet is fully engulfed by the star, with big flares coming out where the planet and star collided. Panel 4 shows the aftermath, with a very transparent cloud of blue dust spread out from the star. A dark orange horizontal ring of material circles the host star.
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept.
NASA, ESA, CSA, R. Crawford (STScI)

Constraining the How

The star at the center of this scene is located in the Milky Way galaxy about 12,000 light-years away from Earth.

The brightening event, formally called ZTF SLRN-2020, was originally spotted as a flash of optical light using the Zwicky Transient Facility at the Palomar Observatory in San Diego, California. Data from NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) showed the star actually brightened in the infrared a year before the optical light flash, hinting at the presence of dust. This initial 2023 investigation led researchers to believe that the star was more Sun-like, and had been in the process of aging into a red giant over hundreds of thousands of years, slowly expanding as it exhausted its hydrogen fuel.

However, Webb’s MIRI told a different story. With powerful sensitivity and spatial resolution, Webb was able to precisely measure the hidden emission from the star and its immediate surroundings, which lie in a very crowded region of space. The researchers found the star was not as bright as it should have been if it had evolved into a red giant, indicating there was no swelling to engulf the planet as once thought.

Reconstructing the Scene

Researchers suggest that, at one point, the planet was about Jupiter-sized, but orbited quite close to the star, even closer than Mercury’s orbit around our Sun. Over millions of years, the planet orbited closer and closer to the star, leading to the catastrophic consequence.

“The planet eventually started to graze the star’s atmosphere. Then it was a runaway process of falling in faster from that moment,” said team member Morgan MacLeod of the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology in Cambridge, Massachusetts. “The planet, as it’s falling in, started to sort of smear around the star.”

In its final splashdown, the planet would have blasted gas away from the outer layers of the star. As it expanded and cooled off, the heavy elements in this gas condensed into cold dust over the next year.

Inspecting the Leftovers

While the researchers did expect an expanding cloud of cooler dust around the star, a look with the powerful NIRSpec revealed a hot circumstellar disk of molecular gas closer in. Furthermore, Webb’s high spectral resolution was able to detect certain molecules in this accretion disk, including carbon monoxide.

“With such a transformative telescope like Webb, it was hard for me to have any expectations of what we’d find in the immediate surroundings of the star,” said Colette Salyk of Vassar College in Poughkeepsie, New York, an exoplanet researcher and co-author on the new paper. “I will say, I could not have expected seeing what has the characteristics of a planet-forming region, even though planets are not forming here, in the aftermath of an engulfment.”

The ability to characterize this gas opens more questions for researchers about what actually happened once the planet was fully swallowed by the star.

“This is truly the precipice of studying these events. This is the only one we’ve observed in action, and this is the best detection of the aftermath after things have settled back down,” Lau said. “We hope this is just the start of our sample.”

These observations, taken under Guaranteed Time Observation program 1240, which was specifically designed to investigate a family of mysterious, sudden, infrared brightening events, were among the first Target of Opportunity programs performed by Webb. These types of study are reserved for events, like supernova explosions, that are expected to occur, but researchers don’t exactly know when or where. NASA’s space telescopes are part of a growing, international network that stands ready to witness these fleeting changes, to help us understand how the universe works.

Researchers expect to add to their sample and identify future events like this using the upcoming Vera C. Rubin Observatory and NASA’s Nancy Grace Roman Space Telescope, which will survey large areas of the sky repeatedly to look for changes over time.

The team’s findings appear today in The Astrophysical Journal.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit: https://science.nasa.gov/webb

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the science paper from the The Astrophysical Journal.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braunhbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Read more about Webb’s impact on exoplanet research

Video: How to Study Exoplanets

Learn more about exoplanets

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up What to See Tonight Meteor Showers Eclipses Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Eta Aquarids & Waiting for a Nova! 
      The first week of May brings the annual Eta Aquarid meteors, peaking on the 6th. And sometime in the next few months, astronomers predict a “new star” or nova explosion will become visible to the unaided eye. 
      Skywatching Highlights
      All Month – Planet Visibility: 
      Venus: Appears very bright and low in the east in the hour before sunrise all month.  Mars: Easy to find in the west in the first few hours of the night, all month long. Sets around midnight to 1 a.m. local time.  Jupiter: Shines brightly in the west following sunset all month. Early in the month it sets about two hours after the Sun, but by late May it’s setting only an hour after sunset.  Saturn: Begins the month next to Venus, low in the eastern sky before sunrise. Quickly separates from Saturn and rises higher in the sky each day before dawn.  Daily Highlights
      May 6 – Eta Aquarid Meteors – The peak of this annual shower is early on the morning of May 6th. The two or three nights before that are also decent opportunities to spy a few shooting stars. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. Seeing 10-20 meteors per hour is common for the Northern Hemisphere, while south of the equator, observers tend to see substantially more. 
      May 3 – Mars & Moon: The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      All month – Venus & Saturn: Low in the eastern sky each morning you’ll find bright Venus paired with much fainter Saturn. They start the month close together, but Saturn pulls away and rises higher over the course of the month. 
      All month – Mars & Jupiter: The planets to look for on May evenings are Mars and Jupiter. They’re visible for a couple of hours after sunset in the western sky. 
      All month – Corona Borealis: Practice finding this constellation in the eastern part of the sky during the first half of the night, so you have a point of comparison when the T CrB nova appears there, likely in the next few months. 
      Transcript
      What’s Up for May? Four bright planets, morning and night, a chance of meteor showers, and waiting for a nova. 
      May Planet Viewing 
      For planet watching this month, you’ll find Mars and Jupiter in the west following sunset. Mars sticks around for several hours after it gets dark out, but Jupiter is setting by 9:30 or 10 p.m., and getting lower in the sky each day. The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      Sky chart showing Venus and Saturn with the crescent Moon in the predawn sky on May 23., 2025. NASA/JPL-Caltech In the morning sky, Venus and Saturn are the planets to look for in May. They begin the month appearing close together on the sky, and progressively pull farther apart as the month goes on. For several days in late May, early risers will enjoy a gathering of the Moon with Saturn and Venus in the eastern sky before dawn. Watch as the Moon passes the two planets while becoming an increasingly slimmer crescent. You’ll find the Moon hanging between Venus and Saturn on the 23rd.   
      Eta Aquarid Meteor Shower 
      Early May brings the annual Eta Aquarid meteor shower. These are meteors that originate from Comet Halley. Earth passes through the comet’s dust stream each May, and again in October. Eta Aquarids are fast moving, and a lot of them produce persistent dust trains that linger for seconds after the meteor’s initial streak.  
      This is one of the best annual showers in the Southern Hemisphere, but tends to be more subdued North of the Equator, where we typically see 10-20 meteors per hour. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. While the peak is early on the morning of May 6th, the two or three nights before that are also decent opportunities to spy a few shooting stars. 
      Waiting for a Nova 
      Sky chart showing constellation Corona Borealis with the location where nova “T CrB” is predicted to appear. The view depicts the constellation with the nova occurring, indicated by an arrow. NASA/JPL-Caltech Astronomers have been waiting expectantly for light from a distant explosion to reach us here on Earth. An event called a nova is anticipated to occur sometime in the coming months. Some 3,000 light years away is a binary star system called T Coronae Borealis, or “T CrB.” It consists of a red giant star with a smaller white dwarf star orbiting closely around it. Now the giant’s outer atmosphere is all puffed up, and the dwarf star is close enough that its gravity continually captures some of the giant’s hydrogen. About every 80 years, the white dwarf has accumulated so much of the other star’s hydrogen, that it ignites a thermonuclear explosion. And that’s the nova. 
      T Coronae Borealis is located in the constellation Corona Borealis, or the “Northern Crown,” and it’s normally far too faint to see with the unaided eye. But it’s predicted the nova will be as bright as the constellation’s brightest star, which is about as bright as the North Star, Polaris. You’ll find Corona Borealis right in between the two bright stars Arcturus and Vega, and you can use the Big Dipper’s handle to point you to the right part of the sky. Try having a look for it on clear, dark nights before the nova, so you’ll have a comparison when a new star suddenly becomes visible there. 
      A sky chart indicating how to locate the constellation Corona Borealis between the bright stars Arcturus and Vega. The Big Dipper’s handle points in the direction of Corona Borealis. NASA/JPL-Caltech Now, you may have heard about this months ago, as astronomers started keeping watch for the nova midway through 2024, but it hasn’t happened yet. Predicting exactly when novas or any sort of stellar outburst will happen is tricky, but excitement began growing when astronomers observed the star to dim suddenly, much as it did right before its previous nova in 1946. When the nova finally does occur, it won’t stay bright for long, likely flaring in peak brightness for only a few days. And since it’s not predicted again for another 80 years, you might just want to join the watch for this super rare, naked eye stellar explosion in the sky! 
      Here are the phases of the Moon for May. 
      The phases of the Moon for May 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science.
      I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. 
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris When curiosity takes flight, learning knows no bounds. The impact of supporting STEM education extends far beyond the classroom, shaping the future of innovation and exploration. NASA Engages is the agency’s outreach website that connects NASA experts and resources with communities, educators, and students across the country. Led by NASA’s Office of STEM Engagement, the platform fosters collaboration between educators, organizations, and NASA employees to inspire the next generation.
      Giovanna Camacho, Pathways systems engineering intern from NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Bringing NASA to the Classroom
      NASA employees dedicate their time and expertise through NASA Engages, whether they’re passionate about robotics, flight research, or inspiring young minds to pursue STEM careers. One example of this is Aero Fair, a STEM program led by the California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. This initiative brings aeronautics directly to students, with NASA Armstrong professionals visiting classrooms – both in person and virtually – to engage students during three-day experiences that allow them to learn about aeronautics, meet NASA professionals, and explore potential career paths they might not have previously considered.
      “When volunteers step up to help inspire and facilitate learning in the classroom, they are benefiting not only the students they interact with, but our future generation as well,” says Giovanna Camacho, Pathways systems engineering intern at NASA Armstrong, who volunteered at the event.
      Chloe Day, a student at Tropico Middle School in Rosamond, California, said Aero Fair inspired her to consider a STEM career. “When NASA employees were talking about what they do and how they help our world today, it made me feel like I want to do it too.”
      Educators can request an Aero Fair experience through NASA’s STEM Gateway. These programs “give students a chance to see themselves as real problem-solvers and innovators,” said Shauna Tinich, a Tropico Middle School teacher. “The most beneficial part of Aero Fair is the real-world connection to STEM. The connection to NASA makes it real and exciting for the students.”
      Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A Program for Impact
      The NASA Engages website matches outreach opportunities to employee skills and interests, while educators and community organizations can use the website to request public speakers, classroom visits, and educational support at events.
      For many volunteers, the experience is just as inspiring as it is for the students. “Every time I volunteer, I walk out inspired,” Camacho said. “It motivates me to continue my pursuit of making a difference.”
      Gary Laier, center liaison for the Small Business Innovation Research and Small Business Technology Transfer programs at NASA Armstrong, and Aero Fair volunteer, agreed: “It’s a rewarding experience for students, teachers, and NASA volunteers alike. I enjoy the opportunity to inspire youth and get them excited about their futures.”
      By participating in outreach activities like Aero Fair, career panels, or events, NASA employees not only help ignite curiosity and provide knowledge to students and the community but also strengthen NASA’s connection to the communities it serves.
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Explore NASA STEM Opportunities
      Educators, organizations, and community groups can connect with NASA in two ways. Through NASA Engages, external groups can request NASA support for their own events – such as inviting a NASA speaker or arranging classroom visits and providing outreach materials. Meanwhile, NASA STEM Gateway provides opportunities for individuals to participate in NASA-developed STEM events, internships, and programs like Aero Fair. To request NASA participation in an event or to learn more about NASA STEM opportunities, visit https://stemgateway.nasa.gov/nasaengages/s/.
      Giovanna Camacho, Pathways systems engineering intern at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Share
      Details
      Last Updated Apr 30, 2025 Related Terms
      Armstrong Flight Research Center Learning Resources NASA STEM Projects STEM Engagement at NASA Explore More
      7 min read ¿Qué es una caminata espacial? (Grados 5.o a 8.o)
      Article 4 hours ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025 
      Article 1 day ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 Min Read How to Contribute to Citizen Science with NASA
      A number of NASA projects use mobile phone apps to put satellite data into the palm of your hand, and allow intrepid citizen scientists to upload data. Credits:
      NASA A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen scientist and contribute to projects about Earth, the solar system, and beyond.
      Science is built from small grains of sand, and you can contribute yours from any corner of the world.
      All you need is a cell phone or a computer with an internet connection to begin a scientific adventure. Can you imagine making a pioneering discovery in the cosmos? Want to help solve problems that could improve life on our planet? Or maybe you dream of helping solve an ancient mystery of the universe? All of this is possible through NASA’s Citizen Science program.
      NASA defines citizen science, or participatory science, as “science projects that rely on volunteers,” said Dr. Marc Kuchner, an astrophysicist and the Citizen Science Officer in the agency’s Science Mission Directorate in Washington, D.C.
      For decades, volunteers have been supporting NASA researchers in different fields and in a variety of ways, depending on the project. They help by taking measurements, sorting data from NASA missions, and deepening our understanding of the universe and our home planet. It all counts.
      “That’s science for you: It’s collaborative,” said Kuchner, who oversees the more than 30 citizen science projects NASA offers. “I connect the public and scientists to get more NASA science done.”
      NASA astrophysicist Marc Kuchner is a pioneer in participatory science and today serves as NASA’s Citizen Science program officer. In 2014, Kuchner created the Disk Detective project, which helps NASA scientists study how planets form. Kuchner has also been the principal investigator for some of the agency’s many citizen science projects, but today he oversees the portfolio and promotes volunteer participation around the world.
      Credit: David Friedlander A menu of projects for all tastes
      Citizen scientists can come from anywhere in the world—they do not have to be U.S. citizens or residents. Volunteers help NASA look for planets in other solar systems, called exoplanets; sort clouds in Earth’s sky; observe solar eclipses; or detect comets and asteroids. Some of those space rocks are even named after the volunteers who helped find them.
      Mass participation is key in initiatives that require as many human eyes as possible. “There are science projects that you can’t do without the help of a big team,” Kuchner said. For example, projects that need large datasets from space telescopes—or “things that are physically big and you need people in different places looking from different angles,” he said.
      One example is Aurorasaurus, which invites people to observe and classify northern and southern auroras. “We try to study them with satellites, but it really helps to have people on the ground taking photos from different places at different times,” he explained.
      “Part of the way we serve our country and humankind is by sharing not just the pretty pictures from our satellites, but the entire experience of doing science,” Kuchner said.
      More than 3 million people have participated in the program. Kuchner believes that shows how much people want to be part of what he calls the “roller coaster” of science. “They want to go on that adventure with us, and we are thrilled to have them.”
      The dream of discovering
      “You can help scientists who are now at NASA and other organizations around the world to discover interesting things,” said Faber Burgos, a citizen scientist and science communicator from Colombia. “Truth be told, I’ve always dreamed of making history.”
      Colombian citizen scientist Faber Burgos studied Modern Languages at the Colombian School of Industrial Careers and has a university degree in Classical Archaeology. Today, he is dedicated to disseminating science content through his social media accounts, focusing on children. In 2020, he and his team launched a balloon probe into the stratosphere with a camera that captured the curvature of the Earth, with the aim of demonstrating that the Earth is round. The video of that feat exceeds 97 million views on his Facebook account, earning him a Guinness World Record.
      Credit: Courtesy of Faber Burgos Burgos has been involved in two projects for the past four years: the International Astronomical Search Collaboration (IASC), which searches the sky for potentially dangerous asteroids, and Backyard Worlds: Planet 9. This project uses data from NASA’s now-completed Wide-field Infrared Survey Explorer (WISE) and its follow-up mission, NEOWISE, to search for brown dwarfs and a hypothetical ninth planet.
      “There are really amazing participants in this project,” said Kuchner, who helped launch it in 2015. NASA’s WISE and NEOWISE missions detected about 2 billion sources in the sky. “So, the question is: Among those many sources, are any of them new unknowns?” he said.
      The project has already found more than 4,000 brown dwarfs. These are Jupiter-sized objects—balls of gas that are too big to be planets, but too small to be stars. Volunteers have even helped discover a new type of brown dwarf.
      Participants in the project are also hopeful they’ll find a hypothetical ninth planet, possibly Neptune-sized, in an orbit far beyond Pluto.
      The Backyard Worlds: Planet 9 citizen science project asks volunteers to help search for new objects at the edge of our solar system. The assignment is to review images from NASA’s past WISE and NEOWISE missions in search of two types of astronomical objects: brown dwarfs(balls of gas the same size as  Jupiter that have too little mass to be considered stars) and low-mass stars. Or, even, the hypothetical ninth planet of our Sun, known as Planet nine, or Planet X. The image shows an artist’s rendering of such a hypothetical world orbiting far from the Sun.
      Credit: Caltech/R. Hurt (IPAC) Caltech/R. Hurt (IPAC) Burgos explained that analyzing the images is easy. “If it’s a moving object, it’s obviously going to be something of interest,” he said. “Usually, when you see these images, everything is still. But if there’s an object moving, you have to keep an eye on it.”
      Once a citizen scientist marks the object across the full image sequence, they send the information to NASA scientists to evaluate.
      “As a citizen scientist, I’m happy to do my bit and, hopefully, one day discover something very interesting,” he said. “That’s the beauty of NASA—it invites everyone to be a scientist. Here, it doesn’t matter what you are, but your desire to learn.”
      The first step
      To become a NASA citizen scientist, start by visiting the program’s website. There you’ll find a complete list of available projects with links to their respective sites. Some are available in Spanish and other languages. Many projects are also hosted on the Zooniverse platform, which has been available since 2006.
      “Another cool way to get involved is to come to one of our live events,” said Kuchner. These are virtual events open to the public, where NASA scientists present their projects and invite people to participate. “Pick a project you like—and if it’s not fun, pick a different one,” he advised. “There are wonderful relationships to be had if you reach out to scientists and other participants.”
      Another way for people to get involved in citizen science is to participate in the annual NASA International Space Apps Challenge, the largest global hackathon. This two-day event creates innovation through international collaboration, providing an opportunity for participants to use NASA’s free and open data and agency partners’ space-based data to tackle real-world problems on Earth and in space. The next NASA International Space Apps Challenge will be October 4-5, 2025.
      Credit: NASA Age is not the limit
      People of all ages can be citizen scientists. Some projects are kid-friendly, such as Nemo-Net, an iPad game that invites participants to color coral reefs to help sort them. “I’d like to encourage young people to start there—or try a project with one of the older people in their life,” Kuchner said.
      Citizen science can also take place in classrooms. In the Growing Beyond Earth project, teachers and students run experiments on how to grow plants in space for future missions. The IASC project also works with high schools to help students detect asteroids.
      A student waters small plants inside a Growing Beyond Earth citizen science project grow box.
      Credit: NASA Projects by the community, for the community
      GLOBE Observer is another initiative with an international network of teachers and students. The platform offers a range of projects—many in Spanish—that invite people to collect data using their cell phones.
      One of the most popular is the GLOBE Mosquito Habitat Mapper, which tracks the migration and spread of mosquitoes that carry diseases. “It’s a way to help save lives—tracking the vectors that transmit malaria and Zika, among others,” Kuchner said.
      Other GLOBE projects explore everything from ground cover to cloud types. Some use astronomical phenomena visible to everyone. For example, during the 2024 total solar eclipse, participants measured air temperature using their phones and shared that data with NASA scientists.
      The full experience of doing science
      No prior studies are needed, but many volunteers go on to collaborate on—or even lead—scientific research. More than 500 NASA citizen scientists have co-authored scientific publications.
      One of them is Hugo Durantini Luca, from Córdoba, Argentina, who has participated in 17 published articles, with more on the way. For years, he explored various science projects, looking for one where he could contribute more actively.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA He participated in NASA’s first citizen science project, Stardust@home, which invites users to search for interstellar dust particles in collectors from the Stardust mission, using a virtual microscope.
      In 2014, he discovered Disk Detective, a project that searches for disks around stars, where planets may form. By looking at images from the WISE and NEOWISE missions, participants can help understand how worlds are born and how solar systems evolve.
      “And, incidentally, if we find planets or some sign of life, all the better,” said Durantini Luca.
      Although that remains a dream, they have made other discoveries—like a new kind of stellar disk called the “Peter Pan Disk,” which appears young even though the star it surrounds is not.
      Durantini Luca participated in one of NASA’s first citizen science projects, launched in 2006: Stardust at home. Still ongoing, this project invites volunteers to participate in the search for evidence of interstellar dust on the aerogel and aluminum foil collectors returned by NASA’s Stardust mission, using an online virtual microscope.
      Credit: NASA Science in person
      In 2016, Durantini Luca got the chance to support Disk Detective with his own observations from the southern hemisphere. He traveled to El Leoncito Astronomical Complex (CASLEO), an observatory in San Juan, Argentina. There, he learned to use a spectrograph—an instrument that breaks down starlight to analyze its composition.
      He treasures that experience. “Curiously, it was the first time in my life I used a telescope,” he said.
      In 2016, citizen scientist Hugo Durantini Luca traveled for 18 hours to the El Leoncito Astronomical Complex (CASLEO), at the foot of the Andes Mountains. From there, he made observations of a candidate star of the Disk Detective project.
      Credit: Luciano García While in-person opportunities are rare, both virtual and physical events help build community. Citizen scientists stay in touch weekly through various channels.
      “Several of us are friends already—after so many years of bad jokes on calls,” said Durantini Luca.
      “People send me pictures of how they met,” said Kuchner. He said the program has even changed how he does science. “It’s changed my life,” he said. “Science is already cool—and this makes it even cooler.”
      About the Author
      NASA Science Editorial Team

      Share








      Details
      Last Updated Apr 29, 2025 Related Terms
      Citizen Science Earth Science Get Involved The Solar System The Universe Explore More
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      8 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      9 hours ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...